IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v49y2020i12p3026-3043.html
   My bibliography  Save this article

Parameter estimation of Lindley step stress model with independent competing risk under type 1 censoring

Author

Listed:
  • Sharon Varghese A
  • V. S. Vaidyanathan

Abstract

In literature, Lindley distribution is considered as an alternative to exponential distribution to fit lifetime data. In the present work, a Lindley step-stress model with independent causes of failure is proposed. An algorithm to generate random samples from the proposed model under type 1 censoring scheme is developed. Point and interval estimation of the model parameters is carried out using maximum likelihood method and percentile bootstrap approach. To understand the effectiveness of the resulting estimates, numerical illustration is provided based on simulated and real-life data sets.

Suggested Citation

  • Sharon Varghese A & V. S. Vaidyanathan, 2020. "Parameter estimation of Lindley step stress model with independent competing risk under type 1 censoring," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(12), pages 3026-3043, June.
  • Handle: RePEc:taf:lstaxx:v:49:y:2020:i:12:p:3026-3043
    DOI: 10.1080/03610926.2019.1584317
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2019.1584317
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2019.1584317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Wu & Liang Wang & Li Yan & Yuhlong Lio, 2021. "Statistical Inference of Left Truncated and Right Censored Data from Marshall–Olkin Bivariate Rayleigh Distribution," Mathematics, MDPI, vol. 9(21), pages 1-24, October.
    2. Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:49:y:2020:i:12:p:3026-3043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.