IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v28y2023icp120-137.html
   My bibliography  Save this article

Change point estimation under a copula-based Markov chain model for binomial time series

Author

Listed:
  • Emura, Takeshi
  • Lai, Ching-Chieh
  • Sun, Li-Hsien

Abstract

Estimation of a change point is a classical statistical problem in sequential analysis and process control. For binomial time series, the existing maximum likelihood estimators (MLEs) for a change point are limited to independent observations. If the independence assumption is violated, the MLEs substantially lose their efficiency, and a likelihood function provides a poor fit to the data. A novel change point estimator is proposed under a copula-based Markov chain model for serially dependent observations. The main novelty is the adaptation of a three-state copula model, consisting of the in-control state, out-of-control state, and transition state. Under this model, a MLE is proposed with the aid of profile likelihood. A parametric bootstrap method is adopted to compute a confidence set for the unknown change point. The simulation studies show that the proposed MLE is more efficient than the existing estimators when serial dependence in observations are specified by the model. The proposed method is illustrated by the jewelry manufacturing data, where the proposed model gives an improved fit.

Suggested Citation

  • Emura, Takeshi & Lai, Ching-Chieh & Sun, Li-Hsien, 2023. "Change point estimation under a copula-based Markov chain model for binomial time series," Econometrics and Statistics, Elsevier, vol. 28(C), pages 120-137.
  • Handle: RePEc:eee:ecosta:v:28:y:2023:i:c:p:120-137
    DOI: 10.1016/j.ecosta.2021.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306221000836
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2021.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emura, Takeshi & Kao, Fan-Hsuan & Michimae, Hirofumi, 2014. "An improved nonparametric estimator of sub-distribution function for bivariate competing risk models," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 229-241.
    2. Marc Hallin & Thomas S. Ferguson & Christian Genest, 2000. "Kendall's tau for serial dependence," ULB Institutional Repository 2013/2093, ULB -- Universite Libre de Bruxelles.
    3. Herold Dehling & Aeneas Rooch & Murad S. Taqqu, 2013. "Non-Parametric Change-Point Tests for Long-Range Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 153-173, March.
    4. A. Laheetharan & P. Wijekoon, 2010. "Improved estimation of the population parameters when some additional information is available," Statistical Papers, Springer, vol. 51(4), pages 889-914, December.
    5. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    6. E. Wencheko & P. Wijekoon, 2005. "Improved estimation of the mean in one-parameter exponential families with known coefficient of variation," Statistical Papers, Springer, vol. 46(1), pages 101-115, January.
    7. Joe, H., 1993. "Parametric Families of Multivariate Distributions with Given Margins," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 262-282, August.
    8. Jia-Han Shih & Wei Lee & Li-Hsien Sun & Takeshi Emura, 2019. "Fitting competing risks data to bivariate Pareto models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(5), pages 1193-1220, March.
    9. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    10. Holger Dette & Dominik Wied, 2016. "Detecting relevant changes in time series models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 371-394, March.
    11. Wang, Hsiuying, 2009. "Comparison of p control charts for low defective rate," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4210-4220, October.
    12. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2017. "Asymptotic behavior of the empirical multilinear copula process under broad conditions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 82-110.
    13. Long, Ting-Hsuan & Emura, Takeshi, 2014. "A control chart using copula-based Markov chain models," MPRA Paper 57419, University Library of Munich, Germany.
    14. Gijbels, Irène & Veraverbeke, Noël & Omelka, Marel, 2011. "Conditional copulas, association measures and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1919-1932, May.
    15. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 125-154.
    16. Abegaz, Fentaw & Gijbels, Irène & Veraverbeke, Noël, 2012. "Semiparametric estimation of conditional copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 43-73.
    17. Jia-Han Shih & Takeshi Emura, 2018. "Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula," Computational Statistics, Springer, vol. 33(3), pages 1293-1323, September.
    18. Holmes, Mark & Kojadinovic, Ivan & Quessy, Jean-François, 2013. "Nonparametric tests for change-point detection à la Gombay and Horváth," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 16-32.
    19. Noël Veraverbeke & Marek Omelka & Irène Gijbels, 2011. "Estimation of a Conditional Copula and Association Measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(4), pages 766-780, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    2. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    3. Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
    4. Grazian, Clara & Dalla Valle, Luciana & Liseo, Brunero, 2022. "Approximate Bayesian conditional copulas," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    5. Gijbels, Irène & Omelka, Marek & Pešta, Michal & Veraverbeke, Noël, 2017. "Score tests for covariate effects in conditional copulas," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 111-133.
    6. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    7. Fermanian, Jean-David & Lopez, Olivier, 2018. "Single-index copulas," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 27-55.
    8. Djaloud, Toihir Soulaimana & Seck, Cheikh Tidiane, 2024. "Nonparametric kernel estimation of conditional copula density," Statistics & Probability Letters, Elsevier, vol. 212(C).
    9. Craiu, V. Radu & Sabeti, Avideh, 2012. "In mixed company: Bayesian inference for bivariate conditional copula models with discrete and continuous outcomes," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 106-120.
    10. repec:kan:wpaper:202105 is not listed on IDEAS
    11. Guannan Liu & Wei Long & Bingduo Yang & Zongwu Cai, 2022. "Semiparametric estimation and model selection for conditional mixture copula models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 287-330, March.
    12. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    13. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    14. Qi Liu & Chun Li & Valentine Wanga & Bryan E. Shepherd, 2018. "Covariate†adjusted Spearman's rank correlation with probability†scale residuals," Biometrics, The International Biometric Society, vol. 74(2), pages 595-605, June.
    15. Neumeyer, Natalie & Omelka, Marek & Hudecová, Šárka, 2019. "A copula approach for dependence modeling in multivariate nonparametric time series," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 139-162.
    16. Noël Veraverbeke, 2024. "Bernstein estimator for conditional copulas," Statistical Papers, Springer, vol. 65(9), pages 5943-5954, December.
    17. Gardes, Laurent & Girard, Stéphane, 2015. "Nonparametric estimation of the conditional tail copula," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 1-16.
    18. Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    19. Lu Lu & Sujit Ghosh, 2024. "Nonparametric Estimation of Conditional Copula Using Smoothed Checkerboard Bernstein Sieves," Mathematics, MDPI, vol. 12(8), pages 1-17, April.
    20. Romera, Rosario & Molanes, Elisa M., 2008. "Copulas in finance and insurance," DES - Working Papers. Statistics and Econometrics. WS ws086321, Universidad Carlos III de Madrid. Departamento de Estadística.
    21. EnDer Su, 2018. "Measuring contagion risk in high volatility state among Taiwanese major banks," Risk Management, Palgrave Macmillan, vol. 20(3), pages 185-241, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:28:y:2023:i:c:p:120-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.