IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v23y2017i1d10.1007_s10985-016-9367-y.html
   My bibliography  Save this article

Nonparametric and semiparametric regression estimation for length-biased survival data

Author

Listed:
  • Yu Shen

    (The University of Texas MD Anderson Cancer Center)

  • Jing Ning

    (The University of Texas MD Anderson Cancer Center)

  • Jing Qin

    (National Institute of Health)

Abstract

For the past several decades, nonparametric and semiparametric modeling for conventional right-censored survival data has been investigated intensively under a noninformative censoring mechanism. However, these methods may not be applicable for analyzing right-censored survival data that arise from prevalent cohorts when the failure times are subject to length-biased sampling. This review article is intended to provide a summary of some newly developed methods as well as established methods for analyzing length-biased data.

Suggested Citation

  • Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
  • Handle: RePEc:spr:lifeda:v:23:y:2017:i:1:d:10.1007_s10985-016-9367-y
    DOI: 10.1007/s10985-016-9367-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-016-9367-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-016-9367-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bergeron, Pierre-Jerome & Asgharian, Masoud & Wolfson, David B., 2008. "Covariate Bias Induced by Length-Biased Sampling of Failure Times," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 737-742, June.
    2. Kwun Chuen Gary Chan & Ying Qing Chen & Chong-Zhi Di, 2012. "Proportional mean residual life model for right-censored length-biased data," Biometrika, Biometrika Trust, vol. 99(4), pages 995-1000.
    3. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2012. "Estimating Incident Population Distribution from Prevalent Data," Biometrics, The International Biometric Society, vol. 68(2), pages 521-531, June.
    4. Debashis Ghosh, 2008. "Proportional Hazards Regression for Cancer Studies," Biometrics, The International Biometric Society, vol. 64(1), pages 141-148, March.
    5. Micha Mandel & Rebecca A. Betensky, 2007. "Testing Goodness of Fit of a Uniform Truncation Model," Biometrics, The International Biometric Society, vol. 63(2), pages 405-412, June.
    6. Chiung-yu Huang & Jing Qin, 2012. "Composite Partial Likelihood Estimation Under Length-Biased Sampling, With Application to a Prevalent Cohort Study of Dementia," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 946-957, September.
    7. Jing Ning & Jing Qin & Yu Shen, 2010. "Non‐parametric tests for right‐censored data with biased sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 609-630, November.
    8. Jing Qin & Yu Shen, 2010. "Statistical Methods for Analyzing Right-Censored Length-Biased Data under Cox Model," Biometrics, The International Biometric Society, vol. 66(2), pages 382-392, June.
    9. Yu-Jen Cheng & Chiung-Yu Huang, 2014. "Combined estimating equation approaches for semiparametric transformation models with length-biased survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 608-618, September.
    10. Shen, Pao-sheng, 2009. "Hazards regression for length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 457-465, February.
    11. Jane Paik Kim & Wenbin Lu & Tony Sit & Zhiliang Ying, 2013. "A Unified Approach to Semiparametric Transformation Models Under General Biased Sampling Schemes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 217-227, March.
    12. Yu Shen & Jing Ning & Jing Qin, 2012. "Likelihood approaches for the invariant density ratio model with biased-sampling data," Biometrika, Biometrika Trust, vol. 99(2), pages 363-378.
    13. Ying Qing Chen, 2010. "Semiparametric Regression in Size-Biased Sampling," Biometrics, The International Biometric Society, vol. 66(1), pages 149-158, March.
    14. Chiung-Yu Huang & Jing Qin, 2013. "Semiparametric estimation for the additive hazards model with left-truncated and right-censored data," Biometrika, Biometrika Trust, vol. 100(4), pages 877-888.
    15. Chiung-Yu Huang & Jing Qin & Dean A. Follmann, 2012. "A maximum pseudo-profile likelihood estimator for the Cox model under length-biased sampling," Biometrika, Biometrika Trust, vol. 99(1), pages 199-210.
    16. Martin, Emily C. & Betensky, Rebecca A., 2005. "Testing Quasi-Independence of Failure and Truncation Times via Conditional Kendall's Tau," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 484-492, June.
    17. Keiding, Niels & Fine, Jason P. & Hansen, Oluf H. & Slama, Rémy, 2011. "Accelerated failure time regression for backward recurrence times and current durations," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 724-729, July.
    18. Shen, Yu & Ning, Jing & Qin, Jing, 2009. "Analyzing Length-Biased Data With Semiparametric Transformation and Accelerated Failure Time Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1192-1202.
    19. Lin, Cunjie & Zhou, Yong, 2014. "Analyzing right-censored and length-biased data with varying-coefficient transformation model," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 45-63.
    20. Jing Ning & Jing Qin & Yu Shen, 2011. "Buckley–James-Type Estimator with Right-Censored and Length-Biased Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1369-1378, December.
    21. Ori Davidov & Konstantinos Fokianos & George Iliopoulos, 2010. "Order-Restricted Semiparametric Inference for the Power Bias Model," Biometrics, The International Biometric Society, vol. 66(2), pages 549-557, June.
    22. Wei Yann Tsai, 2009. "Pseudo-partial likelihood for proportional hazards models with biased-sampling data," Biometrika, Biometrika Trust, vol. 96(3), pages 601-615.
    23. Micha Mandel & Ya'akov Ritov, 2010. "The Accelerated Failure Time Model Under Biased Sampling," Biometrics, The International Biometric Society, vol. 66(4), pages 1306-1308, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianyi Lu & Shuwei Li & Liuquan Sun, 2023. "Combined estimating equation approaches for the additive hazards model with left-truncated and interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 672-697, July.
    2. Ning, Jing & Pak, Daewoo & Zhu, Hong & Qin, Jing, 2022. "Conditional independence test of failure and truncation times: Essential tool for method selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. James H. McVittie & Ana F. Best & David B. Wolfson & David A. Stephens & Julian Wolfson & David L. Buckeridge & Shahinaz M. Gadalla, 2023. "Survival Modelling for Data From Combined Cohorts: Opening the Door to Meta Survival Analyses and Survival Analysis Using Electronic Health Records," International Statistical Review, International Statistical Institute, vol. 91(1), pages 72-87, April.
    4. Peijie Wang & Danning Li & Jianguo Sun, 2021. "A pairwise pseudo‐likelihood approach for left‐truncated and interval‐censored data under the Cox model," Biometrics, The International Biometric Society, vol. 77(4), pages 1303-1314, December.
    5. Pao-sheng Shen & Yingwei Peng & Hsin-Jen Chen & Chyong-Mei Chen, 2022. "Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 68-88, January.
    6. Fan Wu & Sehee Kim & Jing Qin & Rajiv Saran & Yi Li, 2018. "A pairwise likelihood augmented Cox estimator for left†truncated data," Biometrics, The International Biometric Society, vol. 74(1), pages 100-108, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    2. Ma, Huijuan & Zhang, Feipeng & Zhou, Yong, 2015. "Composite estimating equation approach for additive risk model with length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 45-53.
    3. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    4. Micha Mandel & Jacobo de Uña†à lvarez & David K. Simon & Rebecca A. Betensky, 2018. "Inverse probability weighted Cox regression for doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 481-487, June.
    5. Chengbo Li & Yong Zhou, 2021. "The estimation for the general additive–multiplicative hazard model using the length-biased survival data," Statistical Papers, Springer, vol. 62(1), pages 53-74, February.
    6. Jung-Yu Cheng & Shinn-Jia Tzeng, 2014. "Quantile regression of right-censored length-biased data using the Buckley–James-type method," Computational Statistics, Springer, vol. 29(6), pages 1571-1592, December.
    7. Zhang, Qiaozhen & Dai, Hongsheng & Fu, Bo, 2016. "A proportional hazards model for time-to-event data with epidemiological bias," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 224-236.
    8. Chi Hyun Lee & Jing Ning & Yu Shen, 2019. "Model diagnostics for the proportional hazards model with length-biased data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 79-96, January.
    9. Yifei Sun & Kwun Chuen Gary Chan & Jing Qin, 2018. "Simple and fast overidentified rank estimation for right†censored length†biased data and backward recurrence time," Biometrics, The International Biometric Society, vol. 74(1), pages 77-85, March.
    10. Zhang, Feipeng & Peng, Heng & Zhou, Yong, 2016. "Composite partial likelihood estimation for length-biased and right-censored data with competing risks," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 160-176.
    11. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
    12. Fan Wu & Sehee Kim & Jing Qin & Rajiv Saran & Yi Li, 2018. "A pairwise likelihood augmented Cox estimator for left†truncated data," Biometrics, The International Biometric Society, vol. 74(1), pages 100-108, March.
    13. Lin, Cunjie & Zhou, Yong, 2016. "Semiparametric varying-coefficient model with right-censored and length-biased data," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 119-144.
    14. Fei Gao & Kwun Chuen Gary Chan, 2019. "Semiparametric regression analysis of length‐biased interval‐censored data," Biometrics, The International Biometric Society, vol. 75(1), pages 121-132, March.
    15. Gongjun Xu & Tony Sit & Lan Wang & Chiung-Yu Huang, 2017. "Estimation and Inference of Quantile Regression for Survival Data Under Biased Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1571-1586, October.
    16. Yu-Jen Cheng & Chiung-Yu Huang, 2014. "Combined estimating equation approaches for semiparametric transformation models with length-biased survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 608-618, September.
    17. Jin Piao & Jing Ning & Yu Shen, 2019. "Semiparametric model for bivariate survival data subject to biased sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 409-429, April.
    18. Shi, Jianhua & Ma, Huijuan & Zhou, Yong, 2018. "The nonparametric quantile estimation for length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 150-158.
    19. Xuerong Chen & Yeqian Liu & Jianguo Sun & Yong Zhou, 2016. "Semiparametric Quantile Regression Analysis of Right-censored and Length-biased Failure Time Data with Partially Linear Varying Effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 921-938, December.
    20. Jing Qin & Yu Shen, 2010. "Statistical Methods for Analyzing Right-Censored Length-Biased Data under Cox Model," Biometrics, The International Biometric Society, vol. 66(2), pages 382-392, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:23:y:2017:i:1:d:10.1007_s10985-016-9367-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.