IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v214y2021ics0951832021002751.html
   My bibliography  Save this article

Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored

Author

Listed:
  • Ranjan, Rakesh
  • Sen, Rijji
  • Upadhyay, Satyanshu K.

Abstract

The paper considers the Bayes analysis of important lifetime models such as the Weibull, the gamma, and the lognormal distributions when the available data are left truncated and right-censored. Weakly informative prior distributions are employed for the purpose. Two well-known Markov chain Monte Carlo based approaches, namely, the Metropolis algorithm and the Hamiltonian Monte Carlo technique are used to draw samples from analytically intractable posterior distributions. Besides, the paper does a comparative study of the three entertained models using Bayes factor. The paper has considered calculating the marginal likelihood using bridge sampler algorithm for evaluating the necessary Bayes factor. Finally, a numerical illustration based on a real dataset compares the two algorithms and draws relevant conclusions appropriately.

Suggested Citation

  • Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:reensy:v:214:y:2021:i:c:s0951832021002751
    DOI: 10.1016/j.ress.2021.107747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021002751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, N. & Mitra, Debanjan, 2012. "Left truncated and right censored Weibull data and likelihood inference with an illustration," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4011-4025.
    2. Zhang, Tieling & Xie, Min, 2011. "On the upper truncated Weibull distribution and its reliability implications," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 194-200.
    3. Balakrishnan, N. & Ling, M.H., 2014. "Gamma lifetimes and one-shot device testing analysis," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 54-64.
    4. Roberts, G. O. & Smith, A. F. M., 1994. "Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms," Stochastic Processes and their Applications, Elsevier, vol. 49(2), pages 207-216, February.
    5. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    6. Peng, Yizhen & Wang, Yu & Zi, YanYang & Tsui, Kwok-Leung & Zhang, Chuhua, 2017. "Dynamic reliability assessment and prediction for repairable systems with interval-censored data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 301-309.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Wenzhe & Bai, Xiang & Wang, Qingwei & Long, Fang & Li, Hailin & Wu, Zhengrong & Liu, Jian & Yao, Huisheng & Yang, Hong, 2024. "A truncated test scheme design method for success-failure in-orbit tests," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Jiang, Renyan & Qi, Faqun & Cao, Yu, 2023. "Relation between aging intensity function and WPP plot and its application in reliability modelling," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Hirofumi Michimae & Takeshi Emura, 2022. "Likelihood Inference for Copula Models Based on Left-Truncated and Competing Risks Data from Field Studies," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    4. Ke Wu & Liang Wang & Li Yan & Yuhlong Lio, 2021. "Statistical Inference of Left Truncated and Right Censored Data from Marshall–Olkin Bivariate Rayleigh Distribution," Mathematics, MDPI, vol. 9(21), pages 1-24, October.
    5. Shuto, Susumu & Amemiya, Takashi, 2022. "Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    6. Lee, Amy H.I. & Wu, Chien-Wei & Wang, To-Cheng & Kuo, Ming-Han, 2024. "Construction of acceptance sampling schemes for exponential lifetime products with progressive type II right censoring," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Nanami Taketomi & Kazuki Yamamoto & Christophe Chesneau & Takeshi Emura, 2022. "Parametric Distributions for Survival and Reliability Analyses, a Review and Historical Sketch," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    8. Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.
    9. Zhang, Chunfang & Wang, Liang & Bai, Xuchao & Huang, Jianan, 2022. "Bayesian reliability analysis for copula based step-stress partially accelerated dependent competing risks model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    2. Chen, Zhongfei & Wanke, Peter & Tsionas, Mike G., 2018. "Assessing the strategic fit of potential M&As in Chinese banking: A novel Bayesian stochastic frontier approach," Economic Modelling, Elsevier, vol. 73(C), pages 254-263.
    3. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    4. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    5. Caroline Khan & Mike G. Tsionas, 2021. "Constraints in models of production and cost via slack-based measures," Empirical Economics, Springer, vol. 61(6), pages 3347-3374, December.
    6. Jia Liu & John M. Maheu & Yong Song, 2024. "Identification and forecasting of bull and bear markets using multivariate returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
    7. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
    8. Tsionas, Mike G., 2019. "Multi-objective optimization using statistical models," European Journal of Operational Research, Elsevier, vol. 276(1), pages 364-378.
    9. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    10. Vanhatalo, Jarno & Veneranta, Lari & Hudd, Richard, 2012. "Species distribution modeling with Gaussian processes: A case study with the youngest stages of sea spawning whitefish (Coregonus lavaretus L. s.l.) larvae," Ecological Modelling, Elsevier, vol. 228(C), pages 49-58.
    11. Gordon, Stephen & St-Amour, Pascal, 1997. "Asset Prices with Contingent Preferences," Cahiers de recherche 9712, Université Laval - Département d'économique, revised 08 Jun 1998.
    12. Stephen G. Hall & Heather D. Gibson & G. S. Tavlas & Mike G. Tsionas, 2020. "A Monte Carlo Study of Time Varying Coefficient (TVC) Estimation," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 115-130, June.
    13. Will Penny & Biswa Sengupta, 2016. "Annealed Importance Sampling for Neural Mass Models," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-25, March.
    14. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2016. "The good, the bad and the technology: Endogeneity in environmental production models," Journal of Econometrics, Elsevier, vol. 190(2), pages 315-327.
    15. Maurelli, Mario & Modin, Klas & Schmeding, Alexander, 2023. "Incompressible Euler equations with stochastic forcing: A geometric approach," Stochastic Processes and their Applications, Elsevier, vol. 159(C), pages 101-148.
    16. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    17. Zarezadeh Zakarya & Costantini Giovanni, 2019. "Particle diffusion Monte Carlo (PDMC)," Monte Carlo Methods and Applications, De Gruyter, vol. 25(2), pages 121-130, June.
    18. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    19. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    20. Michael L. Polemis & Mike G. Tsionas, 2019. "Bayesian nonlinear panel cointegration: an empirical application to the EKC hypothesis," Letters in Spatial and Resource Sciences, Springer, vol. 12(2), pages 113-120, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:214:y:2021:i:c:s0951832021002751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.