IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1461-d1100139.html
   My bibliography  Save this article

Estimation of Dependent Competing Risks Model with Baseline Proportional Hazards Models under Minimum Ranked Set Sampling

Author

Listed:
  • Ying Zhou

    (School of Mathematics, Yunnan Normal University, Kunming 650500, China)

  • Liang Wang

    (School of Mathematics, Yunnan Normal University, Kunming 650500, China)

  • Tzong-Ru Tsai

    (Department of Statistics, Tamkang University, Tamsui District, New Taipei City 251037, Taiwan)

  • Yogesh Mani Tripathi

    (Department of Mathematics, Indian Institute of Technology Patna, Bihta 801103, India)

Abstract

The ranked set sampling (RSS) is an efficient and flexible sampling method. Based on a modified RSS named minimum ranked set sampling samples (MinRSSU), inference of a dependent competing risks model is proposed in this paper. Then, Marshall–Olkin bivariate distribution model is used to describe the dependence of competing risks. When the competing risks data follow the proportional hazard rate distribution, a dependent competing risks model based on MinRSSU sampling is constructed. In addition, the model parameters and reliability indices were estimated by the classical and Bayesian method. Maximum likelihood estimators and corresponding asymptotic confidence intervals are constructed by using asymptotic theory. In addition, the Bayesian estimator and highest posterior density credible intervals are established under the general prior. Furthermore, according to E-Bayesian theory, the point and interval estimators of model parameters and reliability indices are obtained by a sampling algorithm. Finally, extensive simulation studies and a real-life example are presented for illustrations.

Suggested Citation

  • Ying Zhou & Liang Wang & Tzong-Ru Tsai & Yogesh Mani Tripathi, 2023. "Estimation of Dependent Competing Risks Model with Baseline Proportional Hazards Models under Minimum Ranked Set Sampling," Mathematics, MDPI, vol. 11(6), pages 1-30, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1461-:d:1100139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamid Rahmani & Mostafa Razmkhah, 2017. "Perfect ranking test in moving extreme ranked set sampling," Statistical Papers, Springer, vol. 58(3), pages 855-875, September.
    2. Simon M. S. Lo & Ralf A. Wilke, 2010. "A copula model for dependent competing risks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 359-376, March.
    3. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    4. Sarhan, Ammar M. & Hamilton, David C. & Smith, B., 2010. "Statistical analysis of competing risks models," Reliability Engineering and System Safety, Elsevier, vol. 95(9), pages 953-962.
    5. Malka Gorfine & Li Hsu, 2011. "Frailty-Based Competing Risks Model for Multivariate Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 415-426, June.
    6. Guoxin Qiu & Abbas Eftekharian, 2021. "Extropy information of maximum and minimum ranked set sampling with unequal samples," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(13), pages 2979-2995, July.
    7. Ehsan Zamanzade & M. Mahdizadeh & Hani M. Samawi, 2020. "Efficient estimation of cumulative distribution function using moving extreme ranked set sampling with application to reliability," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 485-502, September.
    8. Al-Saleh, M. Fraiwan & Al-Kadiri, M. Ali, 2000. "Double-ranked set sampling," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 205-212, June.
    9. Guan, Qiang & Tang, Yincai & Xu, Ancha, 2013. "Objective Bayesian analysis for bivariate Marshall–Olkin exponential distribution," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 299-313.
    10. Ming Han, 2020. "E-Bayesian estimation and its E-posterior risk of the exponential distribution parameter based on complete and type I censored samples," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(8), pages 1858-1872, April.
    11. Sabrina Mulinacci, 2018. "Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 205-236, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.
    2. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    3. Coolen-Maturi, Tahani, 2014. "Nonparametric predictive pairwise comparison with competing risks," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 146-153.
    4. Herbert Hove & Frank Beichelt & Parmod K. Kapur, 2017. "Estimation of the Frank copula model for dependent competing risks in accelerated life testing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 673-682, December.
    5. Fang, Chen & Cui, Lirong, 2021. "Balanced Systems by Considering Multi-state Competing Risks Under Degradation Processes," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    6. Manal M. Yousef & Amal S. Hassan & Abdullah H. Al-Nefaie & Ehab M. Almetwally & Hisham M. Almongy, 2022. "Bayesian Estimation Using MCMC Method of System Reliability for Inverted Topp–Leone Distribution Based on Ranked Set Sampling," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    7. Mohammad Al-Saleh & Said Al-Hadhrami, 2003. "Estimation of the mean of the exponential distribution using moving extremes ranked set sampling," Statistical Papers, Springer, vol. 44(3), pages 367-382, July.
    8. Emanuel Krebs & Jeong E. Min & Elizabeth Evans & Libo Li & Lei Liu & David Huang & Darren Urada & Thomas Kerr & Yih-Ing Hser & Bohdan Nosyk, 2017. "Estimating State Transitions for Opioid Use Disorders," Medical Decision Making, , vol. 37(5), pages 483-497, July.
    9. Al-Saleh, Mohammad Fraiwan & Samuh, Monjed Hisham, 2008. "On multistage ranked set sampling for distribution and median estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2066-2078, January.
    10. Amer Ibrahim Al-Omari & Mohammad Fraiwan Al-Saleh, 2010. "Improvement in estimating the population mean using two-stage balanced groups ranked set sampling," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 185-196.
    11. Wang Hao & Cheng Yu, 2014. "Piecewise Cause-Specific Association Analyses of Multivariate Untied or Tied Competing Risks Data," The International Journal of Biostatistics, De Gruyter, vol. 10(2), pages 197-220, November.
    12. Sabrina Mulinacci, 2022. "A Marshall-Olkin Type Multivariate Model with Underlying Dependent Shocks," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2455-2484, December.
    13. Cesar Augusto Taconeli & Idemauro Antonio Rodrigues Lara, 2022. "Improved confidence intervals based on ranked set sampling designs within a parametric bootstrap approach," Computational Statistics, Springer, vol. 37(5), pages 2267-2293, November.
    14. Emura, Takeshi & Hsu, Jiun-Huang, 2020. "Estimation of the Mann–Whitney effect in the two-sample problem under dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    15. Luo, Wei & Zhang, Chun-hua & Chen, Xun & Tan, Yuan-yuan, 2015. "Accelerated reliability demonstration under competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 75-84.
    16. Lo Simon M.S. & Wilke Ralf A., 2014. "A Regression Model for the Copula-Graphic Estimator," Journal of Econometric Methods, De Gruyter, vol. 3(1), pages 21-46, January.
    17. G. Lesitha & P. Yageen Thomas, 2013. "Estimation of the scale parameter of a log-logistic distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(3), pages 427-448, April.
    18. Lo, Simon M.S. & Stephan, Gesine & Wilke, Ralf, 2012. "Estimating the Latent Effect of Unemployment Benefits on Unemployment Duration," IZA Discussion Papers 6650, Institute of Labor Economics (IZA).
    19. Hani M. Samawi & Haresh Rochani & Daniel Linder & Arpita Chatterjee, 2017. "More efficient logistic analysis using moving extreme ranked set sampling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 753-766, March.
    20. Amer Ibrahim Al-Omari & SidAhmed Benchiha & Ibrahim M. Almanjahie, 2022. "Efficient Estimation of Two-Parameter Xgamma Distribution Parameters Using Ranked Set Sampling Design," Mathematics, MDPI, vol. 10(17), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1461-:d:1100139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.