IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v108y2017icp12-26.html
   My bibliography  Save this article

Analysis of left truncated and right censored competing risks data

Author

Listed:
  • Kundu, Debasis
  • Mitra, Debanjan
  • Ganguly, Ayon

Abstract

In this article, the analysis of left truncated and right censored competing risks data is carried out, under the assumption of the latent failure times model. It is assumed that there are two competing causes of failures, although most of the results can be extended for more than two causes of failures. The lifetimes corresponding to the competing causes of failures are assumed to follow Weibull distributions with the same shape parameter but different scale parameters. The maximum likelihood estimation procedure of the model parameters is discussed, and confidence intervals are provided using the bootstrap approach. When the common shape parameter is known, the maximum likelihood estimators of the scale parameters can be obtained in explicit forms, and when it is unknown we provide a simple iterative procedure to compute the maximum likelihood estimator of the shape parameter. The Bayes estimates and the associated credible intervals of unknown parameters are also addressed under a very flexible set of priors on the shape and scale parameters. Extensive Monte Carlo simulations are performed to compare the performances of the different methods. A numerical example is provided for illustrative purposes. Finally the results have been extended when the two competing causes of failures are assumed to be independent Weibull distributions with different shape parameters.

Suggested Citation

  • Kundu, Debasis & Mitra, Debanjan & Ganguly, Ayon, 2017. "Analysis of left truncated and right censored competing risks data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 12-26.
  • Handle: RePEc:eee:csdana:v:108:y:2017:i:c:p:12-26
    DOI: 10.1016/j.csda.2016.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731630247X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.10.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, N. & Mitra, Debanjan, 2012. "Left truncated and right censored Weibull data and likelihood inference with an illustration," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4011-4025.
    2. Kundu, Debasis & Mitra, Debanjan, 2016. "Bayesian inference of Weibull distribution based on left truncated and right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 38-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengping Gong & Chengxiu Ling, 2018. "Robust Estimations for the Tail Index of Weibull-Type Distribution," Risks, MDPI, vol. 6(4), pages 1-15, October.
    2. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    3. Hirofumi Michimae & Takeshi Emura, 2022. "Likelihood Inference for Copula Models Based on Left-Truncated and Competing Risks Data from Field Studies," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    4. Ke Wu & Liang Wang & Li Yan & Yuhlong Lio, 2021. "Statistical Inference of Left Truncated and Right Censored Data from Marshall–Olkin Bivariate Rayleigh Distribution," Mathematics, MDPI, vol. 9(21), pages 1-24, October.
    5. Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xifan Song & Ziyu Xiong & Wenhao Gui, 2022. "Parameter Estimation of Exponentiated Half-Logistic Distribution for Left-Truncated and Right-Censored Data," Mathematics, MDPI, vol. 10(20), pages 1-26, October.
    2. Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.
    3. Prakash Chandra & Arvind Kumar Alok & Yogesh Mani Tripathi & Liang Wang, 2024. "Inference for A Generalized Family of Distributions Under Partially Observed Left Truncated and Right Censored Competing Risks Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 809-844, November.
    4. Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Hirofumi Michimae & Takeshi Emura, 2022. "Likelihood Inference for Copula Models Based on Left-Truncated and Competing Risks Data from Field Studies," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    6. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    7. Emura, Takeshi & Shiu, Shau-Kai, 2014. "Estimation and model selection for left-truncated and right-censored lifetime data with application to electric power transformers analysis," MPRA Paper 57528, University Library of Munich, Germany.
    8. Sisi Chen & Fengkai Yang, 2023. "Expectation-Maximization Algorithm for the Weibull Proportional Hazard Model under Current Status Data," Mathematics, MDPI, vol. 11(23), pages 1-23, November.
    9. Kehui Yao & Jun Zhu & Daniel J. O'Brien & Daniel Walsh, 2023. "Bayesian spatio‐temporal survival analysis for all types of censoring with application to a wildlife disease study," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    10. Yandan Yang & Hon Keung Tony Ng & Narayanaswamy Balakrishnan, 2019. "Expectation–maximization algorithm for system-based lifetime data with unknown system structure," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 69-98, March.
    11. Shuto, Susumu & Amemiya, Takashi, 2022. "Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    12. Gámiz Pérez, M. Luz & Martínez Miranda, María Dolores & Nielsen, Jens Perch, 2013. "Smoothing survival densities in practice," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 368-382.
    13. Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.
    14. Kundu, Debasis & Mitra, Debanjan, 2016. "Bayesian inference of Weibull distribution based on left truncated and right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 38-50.
    15. N. Davarzani & L. Golparvar & A. Parsian & R. Peeters, 2017. "Estimation on dependent right censoring scheme in an ordinary bivariate geometric distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1369-1384, June.
    16. Wassim R. Abou Ghaida & Ayman Baklizi, 2022. "Prediction of future failures in the log-logistic distribution based on hybrid censored data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1598-1606, August.
    17. Ducros, Florence & Pamphile, Patrick, 2018. "Bayesian estimation of Weibull mixture in heavily censored data setting," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 453-462.
    18. Balakrishnan, N. & Pal, Suvra, 2013. "Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 41-67.
    19. Dijoux, Yann & Fouladirad, Mitra & Nguyen, Dinh Tuan, 2016. "Statistical inference for imperfect maintenance models with missing data," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 84-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:108:y:2017:i:c:p:12-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.