IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p2-d1008553.html
   My bibliography  Save this article

Floating Offshore Wind Turbines: Current Status and Future Prospects

Author

Listed:
  • Mohammad Barooni

    (Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
    These authors contributed equally to this work.)

  • Turaj Ashuri

    (College of Engineering and Engineering Technology, Kennesaw State University, Kennesaw, GA 30144, USA)

  • Deniz Velioglu Sogut

    (Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
    These authors contributed equally to this work.)

  • Stephen Wood

    (Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA)

  • Shiva Ghaderpour Taleghani

    (School of Arts and Communication, Florida Institute of Technology, Melbourne, FL 32901, USA)

Abstract

Offshore wind energy is a sustainable renewable energy source that is acquired by harnessing the force of the wind offshore, where the absence of obstructions allows the wind to travel at higher and more steady speeds. Offshore wind has recently grown in popularity because wind energy is more powerful offshore than on land. Prior to the development of floating structures, wind turbines could not be deployed in particularly deep or complicated seabed locations since they were dependent on fixed structures. With the advent of floating structures, which are moored to the seabed using flexible anchors, chains, or steel cables, wind turbines can now be placed far offshore. The deployment of floating wind turbines in deep waters is encouraged by several benefits, including steadier winds, less visual impact, and flexible acoustic noise requirements. A thorough understanding of the physics underlying the dynamic response of the floating offshore wind turbines, as well as various design principles and analysis methods, is necessary to fully compete with traditional energy sources such as fossil fuels. The present work offers a comprehensive review of the most recent state-of-the-art developments in the offshore wind turbine technology, including aerodynamics, hydromechanics, mooring, ice, and inertial loads. The existing design concepts and numerical models used to simulate the complex wind turbine dynamics are also presented, and their capabilities and limitations are discussed in detail.

Suggested Citation

  • Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:2-:d:1008553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brown, S.A. & Ransley, E.J. & Xie, N. & Monk, K. & De Angelis, G.M. & Nicholls-Lee, R. & Guerrini, E. & Greaves, D.M., 2021. "On the impact of motion-thrust coupling in floating tidal energy applications," Applied Energy, Elsevier, vol. 282(PB).
    2. Changhyun Kim & Minh-Chau Dinh & Hae-Jin Sung & Kyong-Hwan Kim & Jeong-Ho Choi & Lukas Graber & In-Keun Yu & Minwon Park, 2022. "Design, Implementation, and Evaluation of an Output Prediction Model of the 10 MW Floating Offshore Wind Turbine for a Digital Twin," Energies, MDPI, vol. 15(17), pages 1-16, August.
    3. Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion," Renewable Energy, Elsevier, vol. 90(C), pages 204-228.
    4. Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Lo Brano, Valerio, 2008. "Energy performances and life cycle assessment of an Italian wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 200-217, January.
    5. Li, Xuan & Zhang, Wei, 2020. "Long-term assessment of a floating offshore wind turbine under environmental conditions with multivariate dependence structures," Renewable Energy, Elsevier, vol. 147(P1), pages 764-775.
    6. Liu, Yingyi & Yoshida, Shigeo, 2015. "An extension of the Generalized Actuator Disc Theory for aerodynamic analysis of the diffuser-augmented wind turbines," Energy, Elsevier, vol. 93(P2), pages 1852-1859.
    7. Buckley, Tadhg & Watson, Phoebe & Cahill, Paul & Jaksic, Vesna & Pakrashi, Vikram, 2018. "Mitigating the structural vibrations of wind turbines using tuned liquid column damper considering soil-structure interaction," Renewable Energy, Elsevier, vol. 120(C), pages 322-341.
    8. Li, Xuan & Zhang, Wei, 2020. "Long-term fatigue damage assessment for a floating offshore wind turbine under realistic environmental conditions," Renewable Energy, Elsevier, vol. 159(C), pages 570-584.
    9. Xiaobing Kong & Lele Ma & Xiangjie Liu & Mohamed Abdelkarim Abdelbaky & Qian Wu, 2020. "Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions," Energies, MDPI, vol. 13(1), pages 1-21, January.
    10. Shah, Kamran Ali & Meng, Fantai & Li, Ye & Nagamune, Ryozo & Zhou, Yarong & Ren, Zhengru & Jiang, Zhiyu, 2021. "A synthesis of feasible control methods for floating offshore wind turbine system dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Yang, Yang & Bashir, Musa & Michailides, Constantine & Mei, Xuan & Wang, Jin & Li, Chun, 2021. "Coupled analysis of a 10 MW multi-body floating offshore wind turbine subjected to tendon failures," Renewable Energy, Elsevier, vol. 176(C), pages 89-105.
    12. Mills, Sarah Banas & Bessette, Douglas & Smith, Hannah, 2019. "Exploring landowners’ post-construction changes in perceptions of wind energy in Michigan," Land Use Policy, Elsevier, vol. 82(C), pages 754-762.
    13. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    14. Khazaee, Meghdad & Derian, Pierre & Mouraud, Anthony, 2022. "A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods," Renewable Energy, Elsevier, vol. 199(C), pages 1568-1579.
    15. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
    16. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    17. Li, Xuan & Zhang, Wei, 2022. "Physics-informed deep learning model in wind turbine response prediction," Renewable Energy, Elsevier, vol. 185(C), pages 932-944.
    18. Schwanitz, Valeria Jana & Wierling, August, 2016. "Offshore wind investments – Realism about cost developments is necessary," Energy, Elsevier, vol. 106(C), pages 170-181.
    19. Hyeonjeong Ahn & Yoon-Jin Ha & Su-gil Cho & Chang-Hyuck Lim & Kyong-Hwan Kim, 2022. "A Numerical Study on the Performance Evaluation of a Semi-Type Floating Offshore Wind Turbine System According to the Direction of the Incoming Waves," Energies, MDPI, vol. 15(15), pages 1-17, July.
    20. Ashuri, T. & Zaaijer, M.B. & Martins, J.R.R.A. & van Bussel, G.J.W. & van Kuik, G.A.M., 2014. "Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy," Renewable Energy, Elsevier, vol. 68(C), pages 893-905.
    21. Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
    22. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    23. Barooni, M. & Ale Ali, N. & Ashuri, T., 2018. "An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines," Energy, Elsevier, vol. 154(C), pages 442-454.
    24. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    25. Castro-Santos, Laura & Filgueira-Vizoso, Almudena & Carral-Couce, Luis & Formoso, José Ángel Fraguela, 2016. "Economic feasibility of floating offshore wind farms," Energy, Elsevier, vol. 112(C), pages 868-882.
    26. Benson, Christopher L. & Magee, Christopher L., 2014. "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, Elsevier, vol. 68(C), pages 745-751.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoshihide Tominaga, 2023. "CFD Prediction for Wind Power Generation by a Small Vertical Axis Wind Turbine: A Case Study for a University Campus," Energies, MDPI, vol. 16(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barooni, M. & Ale Ali, N. & Ashuri, T., 2018. "An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines," Energy, Elsevier, vol. 154(C), pages 442-454.
    2. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    3. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    4. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Li, Xuan & Zhang, Wei, 2022. "Physics-informed deep learning model in wind turbine response prediction," Renewable Energy, Elsevier, vol. 185(C), pages 932-944.
    6. Yang Huang & Decheng Wan, 2019. "Investigation of Interference Effects Between Wind Turbine and Spar-Type Floating Platform Under Combined Wind-Wave Excitation," Sustainability, MDPI, vol. 12(1), pages 1-30, December.
    7. Abramic, A. & García Mendoza, A. & Haroun, R., 2021. "Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Shen, Xin & Chen, Jinge & Hu, Ping & Zhu, Xiaocheng & Du, Zhaohui, 2018. "Study of the unsteady aerodynamics of floating wind turbines," Energy, Elsevier, vol. 145(C), pages 793-809.
    9. Cezary Banaszak & Andrzej Gawlik & Paweł Szcześniak & Marcin Rabe & Katarzyna Widera & Yuriy Bilan & Agnieszka Łopatka & Ewelina Gutowska, 2023. "Economic and Energy Analysis of the Construction of a Wind Farm with Infrastructure in the Baltic Sea," Energies, MDPI, vol. 16(16), pages 1-20, August.
    10. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Martinez, A. & Iglesias, G., 2022. "Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Caputo, Antonio C. & Federici, Alessandro & Pelagagge, Pacifico M. & Salini, Paolo, 2023. "Offshore wind power system economic evaluation framework under aleatory and epistemic uncertainty," Applied Energy, Elsevier, vol. 350(C).
    13. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Wang, Yili & Tao, Jianquan, 2022. "Operational state assessment of wind turbine gearbox based on long short-term memory networks and fuzzy synthesis," Renewable Energy, Elsevier, vol. 181(C), pages 1167-1176.
    14. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    15. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    16. Al-Nassar, W.K. & Neelamani, S. & Al-Salem, K.A. & Al-Dashti, H.A., 2019. "Feasibility of offshore wind energy as an alternative source for the state of Kuwait," Energy, Elsevier, vol. 169(C), pages 783-796.
    17. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    18. Zhang, Buen & Jin, Yaqing & Cheng, Shyuan & Zheng, Yuan & Chamorro, Leonardo P., 2022. "On the dynamics of a model wind turbine under passive tower oscillations," Applied Energy, Elsevier, vol. 311(C).
    19. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    20. Sergi Vilajuana Llorente & José Ignacio Rapha & José Luis Domínguez-García, 2024. "Development and Analysis of a Global Floating Wind Levelised Cost of Energy Map," Clean Technol., MDPI, vol. 6(3), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:2-:d:1008553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.