On the impact of motion-thrust coupling in floating tidal energy applications
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.116246
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
- Ward, Sophie L. & Robins, Peter E. & Lewis, Matt J. & Iglesias, Gregorio & Hashemi, M. Reza & Neill, Simon P., 2018. "Tidal stream resource characterisation in progressive versus standing wave systems," Applied Energy, Elsevier, vol. 220(C), pages 274-285.
- Gaurier, Benoît & Davies, Peter & Deuff, Albert & Germain, Grégory, 2013. "Flume tank characterization of marine current turbine blade behaviour under current and wave loading," Renewable Energy, Elsevier, vol. 59(C), pages 1-12.
- Devine-Wright, Patrick, 2011. "Enhancing local distinctiveness fosters public acceptance of tidal energy: A UK case study," Energy Policy, Elsevier, vol. 39(1), pages 83-93, January.
- Guney, Mukrimin Sevket & Tepe, Yalcin, 2017. "Classification and assessment of energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1187-1197.
- Zhang, Liang & Wang, Shu-qi & Sheng, Qi-hu & Jing, Feng-mei & Ma, Yong, 2015. "The effects of surge motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine," Renewable Energy, Elsevier, vol. 74(C), pages 796-802.
- Sheng, Qihu & Jing, Fengmei & Zhang, Liang & Zhou, Nianfu & Wang, Shuqi & Zhang, Zhiyang, 2016. "Study of the hydrodynamic derivatives of vertical-axis tidal current turbines in surge motion," Renewable Energy, Elsevier, vol. 96(PA), pages 366-376.
- Lewis, M. & Neill, S.P. & Robins, P. & Hashemi, M.R. & Ward, S., 2017. "Characteristics of the velocity profile at tidal-stream energy sites," Renewable Energy, Elsevier, vol. 114(PA), pages 258-272.
- Bryden, I.G & Naik, S & Fraenkel, P & Bullen, C.R, 1998. "Matching tidal current plants to local flow conditions," Energy, Elsevier, vol. 23(9), pages 699-709.
- Brown, S.A. & Ransley, E.J. & Greaves, D.M., 2020. "Developing a coupled turbine thrust methodology for floating tidal stream concepts: Verification under prescribed motion," Renewable Energy, Elsevier, vol. 147(P1), pages 529-540.
- Dalton, Gordon & Allan, Grant & Beaumont, Nicola & Georgakaki, Aliki & Hacking, Nick & Hooper, Tara & Kerr, Sandy & O’Hagan, Anne Marie & Reilly, Kieran & Ricci, Pierpaolo & Sheng, Wanan & Stallard, T, 2015. "Economic and socio-economic assessment methods for ocean renewable energy: Public and private perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 850-878.
- Zhou, Zhibin & Benbouzid, Mohamed & Charpentier, Jean-Frédéric & Scuiller, Franck & Tang, Tianhao, 2017. "Developments in large marine current turbine technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 852-858.
- Luznik, Luksa & Flack, Karen A. & Lust, Ethan E. & Taylor, Katharin, 2013. "The effect of surface waves on the performance characteristics of a model tidal turbine," Renewable Energy, Elsevier, vol. 58(C), pages 108-114.
- Galloway, Pascal W. & Myers, Luke E. & Bahaj, AbuBakr S., 2014. "Quantifying wave and yaw effects on a scale tidal stream turbine," Renewable Energy, Elsevier, vol. 63(C), pages 297-307.
- Lewis, M. & Neill, S.P. & Robins, P.E. & Hashemi, M.R., 2015. "Resource assessment for future generations of tidal-stream energy arrays," Energy, Elsevier, vol. 83(C), pages 403-415.
- Vazquez, A. & Iglesias, G., 2016. "Grid parity in tidal stream energy projects: An assessment of financial, technological and economic LCOE input parameters," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 89-101.
- Bahaj, A.S. & Batten, W.M.J. & McCann, G., 2007. "Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines," Renewable Energy, Elsevier, vol. 32(15), pages 2479-2490.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
- Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
- Zhang, Jincheng & Zhao, Xiaowei & Jin, Siya & Greaves, Deborah, 2022. "Phase-resolved real-time ocean wave prediction with quantified uncertainty based on variational Bayesian machine learning," Applied Energy, Elsevier, vol. 324(C).
- Zhang, Yuquan & Peng, Bin & Zheng, Jinhai & Zheng, Yuan & Tang, Qinghong & Liu, Zhiqiang & Xu, Junhui & Wang, Yirong & Fernandez-Rodriguez, Emmanuel, 2023. "The impact of yaw motion on the wake interaction of adjacent floating tidal stream turbines under free surface condition," Energy, Elsevier, vol. 283(C).
- Zhang, Jincheng & Zhao, Xiaowei & Greaves, Deborah & Jin, Siya, 2023. "Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments," Applied Energy, Elsevier, vol. 341(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
- Wang, Shu-qi & Cui, Jie & Ye, Ren-chuan & Chen, Zhong-fei & Zhang, Liang, 2019. "Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion," Renewable Energy, Elsevier, vol. 135(C), pages 313-325.
- Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
- Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
- Zhang, Yuquan & Peng, Bin & Zheng, Jinhai & Zheng, Yuan & Tang, Qinghong & Liu, Zhiqiang & Xu, Junhui & Wang, Yirong & Fernandez-Rodriguez, Emmanuel, 2023. "The impact of yaw motion on the wake interaction of adjacent floating tidal stream turbines under free surface condition," Energy, Elsevier, vol. 283(C).
- Wang, Shu-qi & Li, Chen-yin & Zhang, Ying & Jing, Feng-mei & Chen, Lin-feng, 2022. "Influence of pitching motion on the hydrodynamic performance of a horizontal axis tidal turbine considering the surface wave," Renewable Energy, Elsevier, vol. 189(C), pages 1020-1032.
- Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
- Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
- Hashemi, M. Reza & Neill, Simon P. & Robins, Peter E. & Davies, Alan G. & Lewis, Matt J., 2015. "Effect of waves on the tidal energy resource at a planned tidal stream array," Renewable Energy, Elsevier, vol. 75(C), pages 626-639.
- de Jesus Henriques, Tiago A. & Hedges, Terry S. & Owen, Ieuan & Poole, Robert J., 2016. "The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave–current interaction," Energy, Elsevier, vol. 102(C), pages 166-175.
- Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
- Fairley, Iain & Williamson, Benjamin J. & McIlvenny, Jason & King, Nicholas & Masters, Ian & Lewis, Matthew & Neill, Simon & Glasby, David & Coles, Daniel & Powell, Ben & Naylor, Keith & Robinson, Max, 2022. "Drone-based large-scale particle image velocimetry applied to tidal stream energy resource assessment," Renewable Energy, Elsevier, vol. 196(C), pages 839-855.
- Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
- Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
- Lam, Raymond & Dubon, Sergio Lopez & Sellar, Brian & Vogel, Christopher & Davey, Thomas & Steynor, Jeffrey, 2023. "Temporal and spatial characterisation of tidal blade load variation for structural fatigue testing," Renewable Energy, Elsevier, vol. 208(C), pages 665-678.
- Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
- Aguayo, Maichel M. & Fierro, Pablo E. & De la Fuente, Rodrigo A. & Sepúlveda, Ignacio A. & Figueroa, Dante M., 2021. "A mixed-integer programming methodology to design tidal current farms integrating both cost and benefits: A case study in the Chacao Channel, Chile," Applied Energy, Elsevier, vol. 294(C).
- El-Shahat, Saeed A. & Li, Guojun & Fu, Lei, 2021. "Investigation of wave–current interaction for a tidal current turbine," Energy, Elsevier, vol. 227(C).
- Calandra, Gemma & Wang, Taiping & Miller, Calum & Yang, Zhaoqing & Polagye, Brian, 2023. "A comparison of the power potential for surface- and seabed-deployed tidal turbines in the San Juan Archipelago, Salish Sea, WA," Renewable Energy, Elsevier, vol. 214(C), pages 168-184.
- Yuquan Zhang & Jisheng Zhang & Yuan Zheng & Chunxia Yang & Wei Zang & E. Fernandez-Rodriguez, 2017. "Experimental Analysis and Evaluation of the Numerical Prediction of Wake Characteristics of Tidal Stream Turbine," Energies, MDPI, vol. 10(12), pages 1-11, December.
More about this item
Keywords
Cyclic loading; Fatigue; Power generation; Mean performance; COAST laboratory; Mooring design;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:282:y:2021:i:pb:s030626192031638x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.