IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v12y2008i1p200-217.html
   My bibliography  Save this article

Energy performances and life cycle assessment of an Italian wind farm

Author

Listed:
  • Ardente, Fulvio
  • Beccali, Marco
  • Cellura, Maurizio
  • Lo Brano, Valerio

Abstract

Renewable energy sources are often presented as "clean". A more correct definition is that they are "cleaner" than ones based on fossil fuel conversion. When the energy consumption and the environmental impacts related to the plant's life-cycle are considered, a more comprehensive assessment of these technologies can be carried out. This paper aims to evaluate the energy and the environmental performances of the electricity production of a wind farm. The impacts related to all the phases of the wind farm construction and operation have been compared to the environmental benefits due to the "green" electricity generation during its useful life. In other terms, the goal is to trace the ecoprofile of the production of 1Â kWh of electricity. A life cycle assessment (LCA) has been performed based on data related to an Italian wind farm: production and deliver of energy and raw materials, components manufacturing, transports, installation, maintenance, disassembly and disposal have been analysed. The attention focused to those life cycle steps generally neglected or not adequately investigated as installation, civil works and maintenance. The results can be assumed as representative of the Italian context and they can represent a further incentive to the diffusion of wind farms. In fact, the environmental performances of the wind farm have been compared to other power energy generation systems. The results showed a great environmental convenience of the inquired technology.

Suggested Citation

  • Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Lo Brano, Valerio, 2008. "Energy performances and life cycle assessment of an Italian wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 200-217, January.
  • Handle: RePEc:eee:rensus:v:12:y:2008:i:1:p:200-217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(06)00075-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Góralczyk, Malgorzata, 2003. "Life-cycle assessment in the renewable energy sector," Applied Energy, Elsevier, vol. 75(3-4), pages 205-211, July.
    2. Ardente, Fulvio & Beccali, Giorgio & Cellura, Maurizio & Lo Brano, Valerio, 2005. "Life cycle assessment of a solar thermal collector: sensitivity analysis, energy and environmental balances," Renewable Energy, Elsevier, vol. 30(2), pages 109-130.
    3. Lenzen, Manfred & Munksgaard, Jesper, 2002. "Energy and CO2 life-cycle analyses of wind turbines—review and applications," Renewable Energy, Elsevier, vol. 26(3), pages 339-362.
    4. FitzHerbert, David, 1999. "Electricity generating renewables and global warming emissions," Renewable Energy, Elsevier, vol. 16(1), pages 1057-1063.
    5. Gagnon, Luc & Belanger, Camille & Uchiyama, Yohji, 2002. "Life-cycle assessment of electricity generation options: The status of research in year 2001," Energy Policy, Elsevier, vol. 30(14), pages 1267-1278, November.
    6. Nomura, Noboru & Inaba, Atsushi & Tonooka, Yutaka & Akai, Makoto, 2001. "Life-cycle emission of oxidic gases from power-generation systems," Applied Energy, Elsevier, vol. 68(2), pages 215-227, February.
    7. Ardente, Fulvio & Beccali, Giorgio & Cellura, Maurizio & Lo Brano, Valerio, 2005. "Life cycle assessment of a solar thermal collector," Renewable Energy, Elsevier, vol. 30(7), pages 1031-1054.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    2. Marimuthu, C. & Kirubakaran, V., 2013. "Carbon pay back period for solar and wind energy project installed in India: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 80-90.
    3. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    4. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    5. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    6. Varun & Prakash, Ravi & Bhat, Inder Krishnan, 2009. "Energy, economics and environmental impacts of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2716-2721, December.
    7. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    8. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    9. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    10. Lund, P.D., 2007. "Upfront resource requirements for large-scale exploitation schemes of new renewable technologies," Renewable Energy, Elsevier, vol. 32(3), pages 442-458.
    11. Greening, Benjamin & Azapagic, Adisa, 2014. "Domestic solar thermal water heating: A sustainable option for the UK?," Renewable Energy, Elsevier, vol. 63(C), pages 23-36.
    12. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    13. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    14. Motte, F. & Notton, G. & Lamnatou, Chr & Cristofari, C. & Chemisana, D., 2019. "Numerical study of PCM integration impact on overall performances of a highly building-integrated solar collector," Renewable Energy, Elsevier, vol. 137(C), pages 10-19.
    15. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    16. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    17. Beccali, Marco & Cellura, Maurizio & Mistretta, Marina, 2007. "Environmental effects of energy policy in sicily: The role of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 282-298, February.
    18. Jorge, Raquel S. & Hertwich, Edgar G., 2013. "Environmental evaluation of power transmission in Norway," Applied Energy, Elsevier, vol. 101(C), pages 513-520.
    19. Modahl, Ingunn Saur & Raadal, Hanne Lerche & Gagnon, Luc & Bakken, Tor Haakon, 2013. "How methodological issues affect the energy indicator results for different electricity generation technologies," Energy Policy, Elsevier, vol. 63(C), pages 283-299.
    20. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2011. "Sensitivity analysis to quantify uncertainty in Life Cycle Assessment: The case study of an Italian tile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4697-4705.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:12:y:2008:i:1:p:200-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.