IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp90-103.html
   My bibliography  Save this article

Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning

Author

Listed:
  • Zhu, Yongchao
  • Zhu, Caichao
  • Tan, Jianjun
  • Tan, Yong
  • Rao, Lei

Abstract

To take full advantage of the limited monitoring data with fault information for operational state prediction in the case of the discrepancy in data distribution between the WTGs, a novel combined method is proposed based on the long short-term memory, fuzzy synthesis and feature-based transfer learning. After the statistical analysis and prediction of the monitoring indexes of two 2-MW WTGs with faulty information, an operational state calibration framework is proposed based on deep learning and fuzzy synthesis. Following this, three feature-based transfer learning methods are adopted to narrow the discrepancy among the data distribution of the WTGs. Correspondingly, feasibility verification of the proposed method is equally addressed. Case applications are performed using the actual monitoring data from No. 13 and 15 wind turbines of a wind farm in northern China. The results show that the operational state calibration framework can sensitively detect the potential fault information of the WTG in advance. Meanwhile, three transfer learning algorithms can effectively narrow the distance of the data distribution among the WTGs, and the classification accuracy can almost reach above 0.9. The proposed method can make full use of existing monitoring data with faulty information to predict the status of other WTGs.

Suggested Citation

  • Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:90-103
    DOI: 10.1016/j.renene.2022.02.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
    2. Guezuraga, Begoña & Zauner, Rudolf & Pölz, Werner, 2012. "Life cycle assessment of two different 2 MW class wind turbines," Renewable Energy, Elsevier, vol. 37(1), pages 37-44.
    3. Li, Yao & Coolen, Frank P.A. & Zhu, Caichao & Tan, Jianjun, 2020. "Reliability assessment of the hydraulic system of wind turbines based on load-sharing using survival signature," Renewable Energy, Elsevier, vol. 153(C), pages 766-776.
    4. Li, Xuan & Zhang, Wei, 2020. "Long-term assessment of a floating offshore wind turbine under environmental conditions with multivariate dependence structures," Renewable Energy, Elsevier, vol. 147(P1), pages 764-775.
    5. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    6. Li, Xuan & Zhang, Wei, 2020. "Long-term fatigue damage assessment for a floating offshore wind turbine under realistic environmental conditions," Renewable Energy, Elsevier, vol. 159(C), pages 570-584.
    7. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    8. Jia, Xiaodong & Jin, Chao & Buzza, Matt & Wang, Wei & Lee, Jay, 2016. "Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves," Renewable Energy, Elsevier, vol. 99(C), pages 1191-1201.
    9. Zhang, Yu & Lu, Wenxiu & Chu, Fulei, 2017. "Planet gear fault localization for wind turbine gearbox using acoustic emission signals," Renewable Energy, Elsevier, vol. 109(C), pages 449-460.
    10. Rinaldi, Giovanni & Garcia-Teruel, Anna & Jeffrey, Henry & Thies, Philipp R. & Johanning, Lars, 2021. "Incorporating stochastic operation and maintenance models into the techno-economic analysis of floating offshore wind farms," Applied Energy, Elsevier, vol. 301(C).
    11. Meyer, Angela, 2021. "Multi-target normal behaviour models for wind farm condition monitoring," Applied Energy, Elsevier, vol. 300(C).
    12. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
    13. Qian, Peng & Zhang, Dahai & Tian, Xiange & Si, Yulin & Li, Liangbi, 2019. "A novel wind turbine condition monitoring method based on cloud computing," Renewable Energy, Elsevier, vol. 135(C), pages 390-398.
    14. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
    15. Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
    16. Orlando, Andrea & Pagnini, Luisa & Repetto, Maria Pia, 2021. "Structural response and fatigue assessment of a small vertical axis wind turbine under stationary and non-stationary excitation," Renewable Energy, Elsevier, vol. 170(C), pages 251-266.
    17. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    18. Zou, Runmin & Yang, Jiaxin & Wang, Yun & Liu, Fang & Essaaidi, Mohamed & Srinivasan, Dipti, 2021. "Wind turbine power curve modeling using an asymmetric error characteristic-based loss function and a hybrid intelligent optimizer," Applied Energy, Elsevier, vol. 304(C).
    19. Ruiz de la Hermosa González-Carrato, Raúl, 2017. "Sound and vibration-based pattern recognition for wind turbines driving mechanisms," Renewable Energy, Elsevier, vol. 109(C), pages 262-274.
    20. Li, Yanting & Jiang, Wenbo & Zhang, Guangyao & Shu, Lianjie, 2021. "Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data," Renewable Energy, Elsevier, vol. 171(C), pages 103-115.
    21. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    22. Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhen & Zhou, Di & Zio, Enrico & Xia, Tangbin & Pan, Ershun, 2023. "Adaptive transfer learning for multimode process monitoring and unsupervised anomaly detection in steam turbines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Rami Al-Hajj & Ali Assi & Bilel Neji & Raymond Ghandour & Zaher Al Barakeh, 2023. "Transfer Learning for Renewable Energy Systems: A Survey," Sustainability, MDPI, vol. 15(11), pages 1-28, June.
    3. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Song, Chaosheng & Chen, Dingliang & Zheng, Jie, 2022. "Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion," Renewable Energy, Elsevier, vol. 200(C), pages 1023-1036.
    4. Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Wang, Yili & Tao, Jianquan, 2022. "Operational state assessment of wind turbine gearbox based on long short-term memory networks and fuzzy synthesis," Renewable Energy, Elsevier, vol. 181(C), pages 1167-1176.
    2. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Song, Chaosheng & Chen, Dingliang & Zheng, Jie, 2022. "Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion," Renewable Energy, Elsevier, vol. 200(C), pages 1023-1036.
    3. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    4. Silvio Simani & Saverio Farsoni & Paolo Castaldi, 2023. "RETRACTED: Supervisory Control and Data Acquisition for Fault Diagnosis of Wind Turbines via Deep Transfer Learning," Energies, MDPI, vol. 16(9), pages 1-22, April.
    5. Li, Xuan & Zhang, Wei, 2022. "Physics-informed deep learning model in wind turbine response prediction," Renewable Energy, Elsevier, vol. 185(C), pages 932-944.
    6. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    7. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    8. Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
    9. Rami Al-Hajj & Ali Assi & Bilel Neji & Raymond Ghandour & Zaher Al Barakeh, 2023. "Transfer Learning for Renewable Energy Systems: A Survey," Sustainability, MDPI, vol. 15(11), pages 1-28, June.
    10. Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.
    11. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2023. "A multi-learner neural network approach to wind turbine fault diagnosis with imbalanced data," Renewable Energy, Elsevier, vol. 208(C), pages 420-430.
    12. Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
    13. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    14. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    15. Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
    16. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    17. Urmeneta, Jon & Izquierdo, Juan & Leturiondo, Urko, 2023. "A methodology for performance assessment at system level—Identification of operating regimes and anomaly detection in wind turbines," Renewable Energy, Elsevier, vol. 205(C), pages 281-292.
    18. Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
    19. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Condition monitoring of wind turbine blades based on self-supervised health representation learning: A conducive technique to effective and reliable utilization of wind energy," Applied Energy, Elsevier, vol. 313(C).
    20. Chen Zhang & Tao Yang, 2023. "Anomaly Detection for Wind Turbines Using Long Short-Term Memory-Based Variational Autoencoder Wasserstein Generation Adversarial Network under Semi-Supervised Training," Energies, MDPI, vol. 16(19), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:90-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.