IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v120y2018icp322-341.html
   My bibliography  Save this article

Mitigating the structural vibrations of wind turbines using tuned liquid column damper considering soil-structure interaction

Author

Listed:
  • Buckley, Tadhg
  • Watson, Phoebe
  • Cahill, Paul
  • Jaksic, Vesna
  • Pakrashi, Vikram

Abstract

This paper considers the potential of using a Tuned Liquid Column Damper (TLCD) to reduce structural vibrations of a wind turbine tower. The effect of TLCD on wind turbine towers, including the soil-structure interactions for a monopile foundation was modelled theoretically and scaled laboratory experiments were carried out to validate these results. The tower of the turbine is represented as a Euler beam with a set of springs at the boundary to simulate the soil-structure interaction. TLCD design was carried out using such a model and the reduction in tower vibrations due to the deployment of TLCD was then examined for various loading conditions in the frequency and the time domain. The efficiency of TLCDs for reducing structural vibrations was investigated for tuned and detuned conditions. The response of a small-scale model was simulated along with that of a full-scale turbine and parametric studies around the variations of inputs related to uncertainties were performed. Experiments were carried out on a scaled model turbine to examine the effectiveness of the TLCD. The practicalities of installing a TLCD in a full-scale turbine were examined.

Suggested Citation

  • Buckley, Tadhg & Watson, Phoebe & Cahill, Paul & Jaksic, Vesna & Pakrashi, Vikram, 2018. "Mitigating the structural vibrations of wind turbines using tuned liquid column damper considering soil-structure interaction," Renewable Energy, Elsevier, vol. 120(C), pages 322-341.
  • Handle: RePEc:eee:renene:v:120:y:2018:i:c:p:322-341
    DOI: 10.1016/j.renene.2017.12.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117312946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.12.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaohui Zeng & Yang Yu & Liang Zhang & Qingquan Liu & Han Wu, 2014. "A New Energy-Absorbing Device for Motion Suppression in Deep-Sea Floating Platforms," Energies, MDPI, vol. 8(1), pages 1-22, December.
    2. Liu, Xiaofeng & Bo, Lin & Luo, Hongling, 2016. "Dynamical measurement system for wind turbine fatigue load," Renewable Energy, Elsevier, vol. 86(C), pages 909-921.
    3. Zili Zhang & Søren R. K. Nielsen & Frede Blaabjerg & Dao Zhou, 2014. "Dynamics and Control of Lateral Tower Vibrations in Offshore Wind Turbines by Means of Active Generator Torque," Energies, MDPI, vol. 7(11), pages 1-27, November.
    4. Ofelia Jianu & Marc A. Rosen & Greg Naterer, 2012. "Noise Pollution Prevention in Wind Turbines: Status and Recent Advances," Sustainability, MDPI, vol. 4(6), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramon Varghese & Vikram Pakrashi & Subhamoy Bhattacharya, 2022. "A Compendium of Formulae for Natural Frequencies of Offshore Wind Turbine Structures," Energies, MDPI, vol. 15(8), pages 1-31, April.
    2. Xiao, Shaohui & Lin, Kun & Liu, Hongjun & Zhou, Annan, 2021. "Performance analysis of monopile-supported wind turbines subjected to wind and operation loads," Renewable Energy, Elsevier, vol. 179(C), pages 842-858.
    3. Zuo, Haoran & Bi, Kaiming & Hao, Hong, 2020. "A state-of-the-art review on the vibration mitigation of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    4. Lin, Kun & Xiao, Shaohui & Zhou, Annan & Liu, Hongjun, 2020. "Experimental study on long-term performance of monopile-supported wind turbines (MWTs) in sand by using wind tunnel," Renewable Energy, Elsevier, vol. 159(C), pages 1199-1214.
    5. Liu, Yingzhou & Li, Xin & Shi, Wei & Wang, Wenhua & Jiang, Zhiyu, 2024. "Vibration control of a monopile offshore wind turbines under recorded seismic waves," Renewable Energy, Elsevier, vol. 226(C).
    6. Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
    7. Zuo, Haoran & Bi, Kaiming & Hao, Hong & Xin, Yu & Li, Jun & Li, Chao, 2020. "Fragility analyses of offshore wind turbines subjected to aerodynamic and sea wave loadings," Renewable Energy, Elsevier, vol. 160(C), pages 1269-1282.
    8. Georgios Malliotakis & Panagiotis Alevras & Charalampos Baniotopoulos, 2021. "Recent Advances in Vibration Control Methods for Wind Turbine Towers," Energies, MDPI, vol. 14(22), pages 1-37, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Jie & Lei, Hang & Zhou, Dai & Han, Zhaolong & Bao, Yan & Zhu, Hongbo & Zhou, Lei, 2019. "Aerodynamic noise assessment for a vertical axis wind turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 141(C), pages 559-569.
    2. Abbas, Nikhar J. & Jasa, John & Zalkind, Daniel S. & Wright, Alan & Pao, Lucy, 2024. "Control co-design of a floating offshore wind turbine," Applied Energy, Elsevier, vol. 353(PB).
    3. Chen, Bei & Hua, Xugang & Zhang, Zili & Nielsen, Søren R.K. & Chen, Zhengqing, 2021. "Active flutter control of the wind turbines using double-pitched blades," Renewable Energy, Elsevier, vol. 163(C), pages 2081-2097.
    4. Jijian Lian & Yue Zhao & Chong Lian & Haijun Wang & Xiaofeng Dong & Qi Jiang & Huan Zhou & Junni Jiang, 2018. "Application of an Eddy Current-Tuned Mass Damper to Vibration Mitigation of Offshore Wind Turbines," Energies, MDPI, vol. 11(12), pages 1-18, November.
    5. Muhammad Moman Shahzad & Xun’an Zhang & Xinwei Wang, 2022. "Identification of Structural Damage and Damping Performance of a Mega-Subcontrolled Structural System (MSCSS) Subjected to Seismic Action," Sustainability, MDPI, vol. 14(19), pages 1-26, September.
    6. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    7. Jianxing Yu & Zhenmian Li & Yang Yu & Shuai Hao & Yiqin Fu & Yupeng Cui & Lixin Xu & Han Wu, 2020. "Design and Performance Assessment of Multi-Use Offshore Tension Leg Platform Equipped with an Embedded Wave Energy Converter System," Energies, MDPI, vol. 13(15), pages 1-21, August.
    8. Zhang, Zili, 2022. "Vibration suppression of floating offshore wind turbines using electromagnetic shunt tuned mass damper," Renewable Energy, Elsevier, vol. 198(C), pages 1279-1295.
    9. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    10. Ghasemian, Masoud & Nejat, Amir, 2015. "Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy," Energy, Elsevier, vol. 88(C), pages 711-717.
    11. Zuo, Haoran & Bi, Kaiming & Hao, Hong, 2020. "A state-of-the-art review on the vibration mitigation of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    12. Payam Aboutalebi & Fares M’zoughi & Izaskun Garrido & Aitor J. Garrido, 2021. "Performance Analysis on the Use of Oscillating Water Column in Barge-Based Floating Offshore Wind Turbines," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    13. Adam Zagubień & Katarzyna Wolniewicz, 2022. "Energy Efficiency of Small Wind Turbines in an Urbanized Area—Case Studies," Energies, MDPI, vol. 15(14), pages 1-15, July.
    14. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    15. Merino-Martínez, Roberto & Pieren, Reto & Schäffer, Beat, 2021. "Holistic approach to wind turbine noise: From blade trailing-edge modifications to annoyance estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Luca Fredianelli & Marco Nastasi & Marco Bernardini & Francesco Fidecaro & Gaetano Licitra, 2020. "Pass-by Characterization of Noise Emitted by Different Categories of Seagoing Ships in Ports," Sustainability, MDPI, vol. 12(5), pages 1-12, February.
    17. Franck Bertagnolio & Michaela Herr & Kaj Dam Madsen, 2023. "A roadmap for required technological advancements to further reduce onshore wind turbine noise impact on the environment," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
    18. Pim van der Male & Marco Vergassola & Karel N. van Dalen, 2020. "Decoupled Modelling Approaches for Environmental Interactions with Monopile-Based Offshore Wind Support Structures," Energies, MDPI, vol. 13(19), pages 1-35, October.
    19. Piotr Brzeski & Mateusz Lazarek & Przemyslaw Perlikowski, 2020. "Influence of Variable Damping Coefficient on Efficiency of TMD with Inerter," Energies, MDPI, vol. 13(23), pages 1-14, November.
    20. Torres, Antonio & Gil, Javier & Plaza, Aitor & Aginaga, Jokin, 2024. "4P operational harmonic and blade vibration in wind turbines: A real case study of an active yaw system and a concrete tower," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:120:y:2018:i:c:p:322-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.