Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.07.087
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2019. "Global levelised cost of electricity from offshore wind," Energy, Elsevier, vol. 189(C).
- Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
- Shen, Macheng & Hu, Zhiqiang & Liu, Geliang, 2016. "Dynamic response and viscous effect analysis of a TLP-type floating wind turbine using a coupled aero-hydro-mooring dynamic code," Renewable Energy, Elsevier, vol. 99(C), pages 800-812.
- Zanforlin, Stefania & Nishino, Takafumi, 2016. "Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines," Renewable Energy, Elsevier, vol. 99(C), pages 1213-1226.
- Rezaeiha, Abdolrahim & Pereira, Ricardo & Kotsonis, Marios, 2017. "Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large Horizontal Axis Wind turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 904-916.
- Sarlak, H. & Meneveau, C. & Sørensen, J.N., 2015. "Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions," Renewable Energy, Elsevier, vol. 77(C), pages 386-399.
- Kausche, Michael & Adam, Frank & Dahlhaus, Frank & Großmann, Jochen, 2018. "Floating offshore wind - Economic and ecological challenges of a TLP solution," Renewable Energy, Elsevier, vol. 126(C), pages 270-280.
- Bento, Nuno & Fontes, Margarida, 2019. "Emergence of floating offshore wind energy: Technology and industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 66-82.
- Tirandaz, M. Rasoul & Rezaeiha, Abdolrahim, 2021. "Effect of airfoil shape on power performance of vertical axis wind turbines in dynamic stall: Symmetric Airfoils," Renewable Energy, Elsevier, vol. 173(C), pages 422-441.
- Lee, Hakjin & Lee, Duck-Joo, 2019. "Effects of platform motions on aerodynamic performance and unsteady wake evolution of a floating offshore wind turbine," Renewable Energy, Elsevier, vol. 143(C), pages 9-23.
- Micallef, Daniel & Sant, Tonio, 2015. "Loading effects on floating offshore horizontal axis wind turbines in surge motion," Renewable Energy, Elsevier, vol. 83(C), pages 737-748.
- Fang, Yuan & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng & Yang, He, 2020. "Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion," Energy, Elsevier, vol. 192(C).
- Thomas Sebastian & Matthew Lackner, 2012. "Analysis of the Induction and Wake Evolution of an Offshore Floating Wind Turbine," Energies, MDPI, vol. 5(4), pages 1-33, April.
- Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion," Renewable Energy, Elsevier, vol. 90(C), pages 204-228.
- Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
- Shen, Xin & Chen, Jinge & Hu, Ping & Zhu, Xiaocheng & Du, Zhaohui, 2018. "Study of the unsteady aerodynamics of floating wind turbines," Energy, Elsevier, vol. 145(C), pages 793-809.
- Wen, Binrong & Dong, Xingjian & Tian, Xinliang & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2018. "The power performance of an offshore floating wind turbine in platform pitching motion," Energy, Elsevier, vol. 154(C), pages 508-521.
- Jeon, Minu & Lee, Seungmin & Lee, Soogab, 2014. "Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method," Renewable Energy, Elsevier, vol. 65(C), pages 207-212.
- Farrugia, R. & Sant, T. & Micallef, D., 2016. "A study on the aerodynamics of a floating wind turbine rotor," Renewable Energy, Elsevier, vol. 86(C), pages 770-784.
- Fu, Shifeng & Jin, Yaqing & Zheng, Yuan & Chamorro, Leonardo P., 2019. "Wake and power fluctuations of a model wind turbine subjected to pitch and roll oscillations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.
- Kyle, Ryan & Lee, Yeaw Chu & Früh, Wolf-Gerrit, 2020. "Propeller and vortex ring state for floating offshore wind turbines during surge," Renewable Energy, Elsevier, vol. 155(C), pages 645-657.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Arabgolarcheh, Alireza & Micallef, Daniel & Benini, Ernesto, 2023. "The impact of platform motion phase differences on the power and load performance of tandem floating offshore wind turbines," Energy, Elsevier, vol. 284(C).
- Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
- Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
- Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Aerodynamic analysis for different operating states of floating offshore wind turbine induced by pitching movement," Energy, Elsevier, vol. 285(C).
- Arabgolarcheh, Alireza & Micallef, Daniel & Rezaeiha, Abdolrahim & Benini, Ernesto, 2023. "Modelling of two tandem floating offshore wind turbines using an actuator line model," Renewable Energy, Elsevier, vol. 216(C).
- Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Hidetaka Senga & Hiroki Umemoto & Hiromichi Akimoto, 2022. "Verification of Tilt Effect on the Performance and Wake of a Vertical Axis Wind Turbine by Lifting Line Theory Simulation," Energies, MDPI, vol. 15(19), pages 1-17, September.
- Yang, Lin & Liao, Kangping & Ma, Qingwei & Ma, Gang & Sun, Hanbing, 2023. "Investigation of wake characteristics of floating offshore wind turbine with control strategy using actuator curve embedding method," Renewable Energy, Elsevier, vol. 218(C).
- Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- Duan, Lei & Sun, Qinghong & He, Zanyang & Li, Gen, 2022. "Wake topology and energy recovery in floating horizontal-axis wind turbines with harmonic surge motion," Energy, Elsevier, vol. 260(C).
- Arabgolarcheh, Alireza & Micallef, Daniel & Benini, Ernesto, 2023. "The impact of platform motion phase differences on the power and load performance of tandem floating offshore wind turbines," Energy, Elsevier, vol. 284(C).
- Wang, Xinbao & Cai, Chang & Wu, Xianyou & Chen, Yewen & Wang, Tengyuan & Zhong, Xiaohui & Li, Qing'an, 2024. "Numerical validation of the dynamic aerodynamic similarity criterion for floating offshore wind turbines under equivalent pitch motions," Energy, Elsevier, vol. 294(C).
- Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Aerodynamic analysis for different operating states of floating offshore wind turbine induced by pitching movement," Energy, Elsevier, vol. 285(C).
- Yang, Lin & Liao, Kangping & Ma, Qingwei & Ma, Gang & Sun, Hanbing, 2023. "Investigation of wake characteristics of floating offshore wind turbine with control strategy using actuator curve embedding method," Renewable Energy, Elsevier, vol. 218(C).
- Fang, Yuan & Li, Gen & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng, 2021. "Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine," Energy, Elsevier, vol. 218(C).
- Chen, Ziwen & Wang, Xiaodong & Guo, Yize & Kang, Shun, 2021. "Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions," Renewable Energy, Elsevier, vol. 163(C), pages 1849-1870.
- Kyle, Ryan & Früh, Wolf-Gerrit, 2022. "The transitional states of a floating wind turbine during high levels of surge," Renewable Energy, Elsevier, vol. 200(C), pages 1469-1489.
- Arabgolarcheh, Alireza & Micallef, Daniel & Rezaeiha, Abdolrahim & Benini, Ernesto, 2023. "Modelling of two tandem floating offshore wind turbines using an actuator line model," Renewable Energy, Elsevier, vol. 216(C).
- Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
- Fu, Shifeng & Li, Zheng & Zhu, Weijun & Han, Xingxing & Liang, Xiaoling & Yang, Hua & Shen, Wenzhong, 2023. "Study on aerodynamic performance and wake characteristics of a floating offshore wind turbine under pitch motion," Renewable Energy, Elsevier, vol. 205(C), pages 317-325.
- Zhang, Buen & Jin, Yaqing & Cheng, Shyuan & Zheng, Yuan & Chamorro, Leonardo P., 2022. "On the dynamics of a model wind turbine under passive tower oscillations," Applied Energy, Elsevier, vol. 311(C).
- Fang, Yuan & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng & Yang, He, 2020. "Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion," Energy, Elsevier, vol. 192(C).
- Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming, 2017. "Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine," Energy, Elsevier, vol. 141(C), pages 2054-2068.
- Kyle, Ryan & Lee, Yeaw Chu & Früh, Wolf-Gerrit, 2020. "Propeller and vortex ring state for floating offshore wind turbines during surge," Renewable Energy, Elsevier, vol. 155(C), pages 645-657.
- Zeng, Fanxu & Zhang, Ningchuan & Huang, Guoxing & Gu, Qian & He, Meng, 2023. "Dynamic response of floating offshore wind turbines under freak waves with large crest and deep trough," Energy, Elsevier, vol. 278(C).
- Wen, Binrong & Tian, Xinliang & Zhang, Qi & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "Wind shear effect induced by the platform pitch motion of a spar-type floating wind turbine," Renewable Energy, Elsevier, vol. 135(C), pages 1186-1199.
More about this item
Keywords
Wind energy; Wind farm layout design; Horizontal axis wind turbine; Unsteady aerodynamics; Power performance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:859-876. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.