IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006586.html
   My bibliography  Save this article

Fragility estimation for performance-based structural design of floating offshore wind turbine components

Author

Listed:
  • Choe, Do-Eun
  • Ramezani, Mahyar

Abstract

This study proposes a computational and mathematical framework aimed at assessing the reliability of structural components within Floating Offshore Wind Turbines (FOWT) that reflects the various sources of uncertainties coupled between structural analyses, hydrodynamics, and aerodynamics. The limit state functions are represented through structural capacity and environmental demand models for selected structural failure modes that incorporate fully coupled aero-hydro-servo-elastic analysis. The fragility surfaces are developed for a selected benchmark wind turbine for both operating and parking conditions. The fragilities are also estimated under 50-year and 100-year environmental conditions in the selected U.S. coastal regions. It is found that the wind speed variations largely affect the fragility during non-operation, while wave height variations are significant during operation. Increased uncertainties in environmental parameters raised failure probabilities, especially in lower fragility ranges targeted by design codes. Analyses in U.S. coastal environments show both parking and operating conditions can be critical, challenging the previous focus on parking. Sensitivity studies reveal that under mild conditions, structural reliability is influenced by moment of inertia and material strength, but as environmental loads increase, these parameters become equally significant. Increased uncertainties in parameters lead to higher failure risks, especially below 25 m/s wind speeds.

Suggested Citation

  • Choe, Do-Eun & Ramezani, Mahyar, 2025. "Fragility estimation for performance-based structural design of floating offshore wind turbine components," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006586
    DOI: 10.1016/j.ress.2024.110587
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.