IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp745-751.html
   My bibliography  Save this article

On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries

Author

Listed:
  • Benson, Christopher L.
  • Magee, Christopher L.

Abstract

An important issue in various domains of renewable energy is the use of technological improvement trends to project future capabilities of energy technologies. This paper analyzes two pairs of renewable energy technologies and finds that the annual improvement rate of cost/investment is quite different for the four technological domains: namely, solar photovoltaics (PV) (9.0% per year), wind turbines (2.9%), batteries (3.1%) and capacitors (21.1%). While these trends have been reasonably consistent over long time frames, projecting these trends into the future without a better understanding of the underlying causes of the improvements is not at all reliable. This paper establishes theoretical fundamentals for explaining the differences in such rates and a framework for empirically probing such explanations using patent data. Employing this framework, this study collects and analyzes a set of highly representative patents for each of the four domains, allowing measurement of: patenting rates, reliance on scientific literature and other characteristics of the different fields. Our study of the inventions, while not establishing an indisputable causal relationship for the differing rates, establishes a broader theoretical basis for why such rates differ so greatly and why they might be stable over time. Among many possible effects, this study indicates that the age of knowledge utilized in the patents and the percentage of very important inventions in the field are the most likely significant contributors to higher rates of advance.

Suggested Citation

  • Benson, Christopher L. & Magee, Christopher L., 2014. "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, Elsevier, vol. 68(C), pages 745-751.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:745-751
    DOI: 10.1016/j.renene.2014.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114001451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. John Bound & Clint Cummins & Zvi Griliches & Bronwyn H. Hall & Adam B. Jaffe, 1984. "Who Does R&D and Who Patents?," NBER Chapters, in: R&D, Patents, and Productivity, pages 21-54, National Bureau of Economic Research, Inc.
    3. Olav Sorenson & Jasjit Singh, 2007. "Science, Social Networks and Spillovers," Industry and Innovation, Taylor & Francis Journals, vol. 14(2), pages 219-238.
    4. Lori Rosenkopf & Atul Nerkar, 2001. "Beyond local search: boundary‐spanning, exploration, and impact in the optical disk industry," Strategic Management Journal, Wiley Blackwell, vol. 22(4), pages 287-306, April.
    5. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    6. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    7. Béla Nagy & J Doyne Farmer & Quan M Bui & Jessika E Trancik, 2013. "Statistical Basis for Predicting Technological Progress," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    8. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    9. Swift, Kenton D., 2013. "A comparison of the cost and financial returns for solar photovoltaic systems installed by businesses in different locations across the United States," Renewable Energy, Elsevier, vol. 57(C), pages 137-143.
    10. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    11. Rebecca Henderson & Adam B. Jaffe & Manuel Trajtenberg, 1998. "Universities As A Source Of Commercial Technology: A Detailed Analysis Of University Patenting, 1965-1988," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 119-127, February.
    12. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    13. William D. Nordhaus, 2014. "The Perils of the Learning Model for Modeling Endogenous Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    14. Schoenmakers, Wilfred & Duysters, Geert, 2010. "The technological origins of radical inventions," Research Policy, Elsevier, vol. 39(8), pages 1051-1059, October.
    15. Ferioli, F. & Schoots, K. & van der Zwaan, B.C.C., 2009. "Use and limitations of learning curves for energy technology policy: A component-learning hypothesis," Energy Policy, Elsevier, vol. 37(7), pages 2525-2535, July.
    16. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    17. Mowery, David & Rosenberg, Nathan, 1993. "The influence of market demand upon innovation: A critical review of some recent empirical studies," Research Policy, Elsevier, vol. 22(2), pages 107-108, April.
    18. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    19. Atul Nerkar, 2003. "Old Is Gold? The Value of Temporal Exploration in the Creation of New Knowledge," Management Science, INFORMS, vol. 49(2), pages 211-229, February.
    20. Josh Lerner, 2005. "150 Years of Patent Office Practice," American Law and Economics Review, American Law and Economics Association, vol. 7(1), pages 112-143.
    21. Beliën, Jeroen & De Boeck, Liesje & Colpaert, Jan & Cooman, Gert, 2013. "The best time to invest in photovoltaic panels in Flanders," Renewable Energy, Elsevier, vol. 50(C), pages 348-358.
    22. Kaldellis, J.K. & Kapsali, M. & Kaldelli, El. & Katsanou, Ev., 2013. "Comparing recent views of public attitude on wind energy, photovoltaic and small hydro applications," Renewable Energy, Elsevier, vol. 52(C), pages 197-208.
    23. Lizin, Sebastien & Leroy, Julie & Delvenne, Catherine & Dijk, Marc & De Schepper, Ellen & Van Passel, Steven, 2013. "A patent landscape analysis for organic photovoltaic solar cells: Identifying the technology's development phase," Renewable Energy, Elsevier, vol. 57(C), pages 5-11.
    24. Bolinger, Mark & Wiser, Ryan, 2009. "Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth," Energy Policy, Elsevier, vol. 37(3), pages 1061-1071, March.
    25. John F. Muth, 1986. "Search Theory and the Manufacturing Progress Function," Management Science, INFORMS, vol. 32(8), pages 948-962, August.
    26. Christopher L. Benson & Christopher L. Magee, 2013. "A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 69-82, July.
    27. Gavin Sinclair & Steven Klepper & Wesley Cohen, 2000. "What's Experience Got to Do With It? Sources of Cost Reduction in a Large Specialty Chemicals Producer," Management Science, INFORMS, vol. 46(1), pages 28-45, January.
    28. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    29. Lund, P.D., 2011. "Boosting new renewable technologies towards grid parity – Economic and policy aspects," Renewable Energy, Elsevier, vol. 36(11), pages 2776-2784.
    30. Singh, Parm Pal & Singh, Sukhmeet, 2010. "Realistic generation cost of solar photovoltaic electricity," Renewable Energy, Elsevier, vol. 35(3), pages 563-569.
    31. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    32. Christopher L. Benson & Christopher L. Magee, 2013. "Erratum to: A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 83-83, July.
    33. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67(3), pages 297-297.
    34. Poel, Ibo van de, 2003. "The transformation of technological regimes," Research Policy, Elsevier, vol. 32(1), pages 49-68, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher L Benson & Christopher L Magee, 2015. "Quantitative Determination of Technological Improvement from Patent Data," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-23, April.
    2. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    3. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    4. William Arant & Dirk Fornahl & Nils Grashof & Kolja Hesse & Cathrin Söllner, 2019. "University-industry collaborations—The key to radical innovations? [Universität-Industrie-Kooperationen – Der Schlüssel zu radikalen Innovationen?]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 39(2), pages 119-141, October.
    5. Antonio Malva & Stijn Kelchtermans & Bart Leten & Reinhilde Veugelers, 2015. "Basic science as a prescription for breakthrough inventions in the pharmaceutical industry," The Journal of Technology Transfer, Springer, vol. 40(4), pages 670-695, August.
    6. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    7. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    8. Kathryn Rudie Harrigan & Maria Chiara Guardo & Elona Marku, 2018. "Patent value and the Tobin’s q ratio in media services," The Journal of Technology Transfer, Springer, vol. 43(1), pages 1-19, February.
    9. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    10. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    11. Corradini, Carlo & De Propris, Lisa, 2017. "Beyond local search: Bridging platforms and inter-sectoral technological integration," Research Policy, Elsevier, vol. 46(1), pages 196-206.
    12. Avimanyu Datta, 2016. "Antecedents To Radical Innovations: A Longitudinal Look At Firms In The Information Technology Industry By Aggregation Of Patents," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-31, October.
    13. Kathryn Rudie Harrigan & Maria Chiara Guardo & Bo Cowgill, 2017. "Multiplicative-innovation synergies: tests in technological acquisitions," The Journal of Technology Transfer, Springer, vol. 42(5), pages 1212-1233, October.
    14. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    15. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    16. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    17. Triulzi, Giorgio & Alstott, Jeff & Magee, Christopher L., 2020. "Estimating technology performance improvement rates by mining patent data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    18. Funk, Jeffrey L. & Magee, Christopher L., 2015. "Rapid improvements with no commercial production: How do the improvements occur?," Research Policy, Elsevier, vol. 44(3), pages 777-788.
    19. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    20. Yuandi Wang & Xiongfeng Pan & Yantai Chen & Xin Gu, 2013. "Do references in transferred patent documents signal learning opportunities for the receiving firms?," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 731-752, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:745-751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.