IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3009-d797916.html
   My bibliography  Save this article

Simulation Research on Deadbeat Direct Torque and Flux Control of Permanent Magnet Synchronous Motor

Author

Listed:
  • Jie Chen

    (School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China)

  • Jiajun Wang

    (School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China)

  • Bo Yan

    (School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China)

Abstract

Direct torque control (DTC) is widely used in a permanent-magnet synchronous motor (PMSM), but it has its own shortcomings caused by high torque ripple. Deadbeat-direct torque and flux control (DB-DTFC) is a new torque and flux method compared with DTC. However, the traditional DB-DTFC is often based on rotor-flux-oriented control. The reference voltage of the stator is computed in a rotor-flux-oriented coordinate system, and the solution involves solving quadratic equations, which will increase the burden of computational processing. To improve the computation of the reference voltages and the control performance, this paper proposes a new DB-DTFC algorithm and introduces its basic principles. First, the proposed DB-DTFC algorithm uses the forward Euler equation to solve the reference voltage in a stator-flux-oriented coordinate system. Second, the discrete mathematical model is used to predict the next control current to achieve deadbeat control. Third, the structural model of the proposed DB-DTFC is constructed. Finally, the simulation model of the proposed DB-DTFC algorithm is built with a MATLAB/Simulink platform. The simulation results prove that the proposed DB-DTFC algorithm can achieve better control performance in torque and flux control compared with the DTC algorithm and SVM-based direct torque and flux control (SVM-DTFC) algorithm. In particular, the torque index of DB-DTFC is reduced about 6% in a limited speed range in comparison with the DTC algorithm.

Suggested Citation

  • Jie Chen & Jiajun Wang & Bo Yan, 2022. "Simulation Research on Deadbeat Direct Torque and Flux Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3009-:d:797916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Zhou & Min Ai & Dongyang Sun & Ningzhi Jin & Xiaogang Wu, 2019. "Field Weakening Operation Control Strategies of PMSM Based on Feedback Linearization," Energies, MDPI, vol. 12(23), pages 1-18, November.
    2. Dazhi Wang & Tianqing Yuan & Xingyu Wang & Xinghua Wang & Wenhui Li, 2018. "A Composite Vectors Modulation Strategy for PMSM DTC Systems," Energies, MDPI, vol. 11(10), pages 1-15, October.
    3. Łukasz J. Niewiara & Rafał Szczepański & Tomasz Tarczewski & Lech M. Grzesiak, 2022. "State Feedback Speed Control with Periodic Disturbances Attenuation for PMSM Drive," Energies, MDPI, vol. 15(2), pages 1-18, January.
    4. Caixia Gao & Yanjie Nie & Jikai Si & Ziyi Fu & Haichao Feng, 2019. "Mode Recognition and Fault Positioning of Permanent Magnet Demagnetization for PMSM," Energies, MDPI, vol. 12(9), pages 1-14, April.
    5. Jae Suk Lee, 2018. "Stability Analysis of Deadbeat-Direct Torque and Flux Control for Permanent Magnet Synchronous Motor Drives with Respect to Parameter Variations," Energies, MDPI, vol. 11(8), pages 1-18, August.
    6. GuangQing Bao & WuGang Qi & Ting He, 2020. "Direct Torque Control of PMSM with Modified Finite Set Model Predictive Control," Energies, MDPI, vol. 13(1), pages 1-16, January.
    7. Weiran Wang & Fei Tan & Jiaxin Wu & Huilin Ge & Haifeng Wei & Yi Zhang, 2019. "Adaptive Integral Backstepping Controller for PMSM with AWPSO Parameters Optimization," Energies, MDPI, vol. 12(13), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haneen Ghanayem & Mohammad Alathamneh & R. M. Nelms, 2023. "Decoupled Speed and Flux Control of Three-Phase PMSM Based on the Proportional-Resonant Control Method," Energies, MDPI, vol. 16(3), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Sandre Hernandez & Jorge S. Cervantes-Rojas & Jesus P. Ordaz Oliver & Carlos Cuvas Castillo, 2021. "Stator Fixed Deadbeat Predictive Torque and Flux Control of a PMSM Drive with Modulated Duty Cycle," Energies, MDPI, vol. 14(10), pages 1-15, May.
    2. Yang Liu & Jin Zhao & Quan Yin, 2021. "Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives," Energies, MDPI, vol. 14(8), pages 1-13, April.
    3. Bowei Zou & Yougui Guo & Xi Xiao & Bowen Yang & Xiao Wang & Mingzhang Shi & Yulin Tu, 2020. "Performance Improvement of Matrix Converter Direct Torque Control System," Energies, MDPI, vol. 13(12), pages 1-17, June.
    4. Karol Wróbel & Piotr Serkies & Krzysztof Szabat, 2020. "Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches," Energies, MDPI, vol. 13(5), pages 1-15, March.
    5. Zhanqing Zhou & Xin Gu & Zhiqiang Wang & Guozheng Zhang & Qiang Geng, 2019. "An Improved Torque Control Strategy of PMSM Drive Considering On-Line MTPA Operation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    6. Apostolos Lamprokostopoulos & Epameinondas Mitronikas & Alexandra Barmpatza, 2022. "Detection of Demagnetization Faults in Axial Flux Permanent-Magnet Synchronous Wind Generators," Energies, MDPI, vol. 15(9), pages 1-15, April.
    7. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    8. Grzegorz Sieklucki & Dawid Kara, 2022. "Design and Modelling of Energy Conversion with the Two-Region Torque Control of a PMSM in an EV Powertrain," Energies, MDPI, vol. 15(13), pages 1-18, July.
    9. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    10. Yinquan Yu & Haixi Gao & Qiping Chen & Peng Liu & Shuangxia Niu, 2022. "Demagnetization Fault Detection and Location in PMSM Based on Correlation Coefficient of Branch Current Signals," Energies, MDPI, vol. 15(8), pages 1-17, April.
    11. Yuhao Wei & Li Sun & Zhongxian Chen, 2022. "An Improved Sliding Mode Control Method to Increase the Speed Stability of Permanent Magnet Synchronous Motors," Energies, MDPI, vol. 15(17), pages 1-12, August.
    12. Jaime A. Rohten & David N. Dewar & Pericle Zanchetta & Andrea Formentini & Javier A. Muñoz & Carlos R. Baier & José J. Silva, 2021. "Multivariable Deadbeat Control of Power Electronics Converters with Fast Dynamic Response and Fixed Switching Frequency," Energies, MDPI, vol. 14(2), pages 1-16, January.
    13. Li Yang & Fuzhao Yang & Weitao Sheng & Kun Zhou & Tianmin Huang, 2021. "Fuzzy Chaos Control of Fractional Order D-PMSG for Wind Turbine with Uncertain Parameters by State Feedback Design," Energies, MDPI, vol. 14(21), pages 1-15, November.
    14. Piotr Mynarek & Janusz Kołodziej & Adrian Młot & Marcin Kowol & Marian Łukaniszyn, 2021. "Influence of a Winding Short-Circuit Fault on Demagnetization Risk and Local Magnetic Forces in V-Shaped Interior PMSM with Distributed and Concentrated Winding," Energies, MDPI, vol. 14(16), pages 1-16, August.
    15. Feng Jiang & Fan Yang & Songjun Sun & Kai Yang, 2022. "Improved Linear Active Disturbance Rejection Control for IPMSM Drives Considering Load Inertia Mismatch," Energies, MDPI, vol. 15(3), pages 1-22, February.
    16. Chao Wu & Jun Yang & Qi Li, 2020. "GPIO-Based Nonlinear Predictive Control for Flux-Weakening Current Control of the IPMSM Servo System," Energies, MDPI, vol. 13(7), pages 1-21, April.
    17. Chunyan Li & Fei Guo & Baoquan Kou & Tao Meng, 2021. "Research on the Non-Magnetic Conductor of a PMSM Based on the Principle of Variable Exciting Magnetic Reluctance," Energies, MDPI, vol. 14(2), pages 1-29, January.
    18. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    19. Hao Yu & Jiajun Wang & Zhuangzhuang Xin, 2022. "Model Predictive Control for PMSM Based on Discrete Space Vector Modulation with RLS Parameter Identification," Energies, MDPI, vol. 15(11), pages 1-16, May.
    20. Pankaj Kumar & Yashwant Kashyap & Roystan Vijay Castelino & Anabalagan Karthikeyan & Manjunatha Sharma K. & Debabrata Karmakar & Panagiotis Kosmopoulos, 2023. "Laboratory-Scale Airborne Wind Energy Conversion Emulator Using OPAL-RT Real-Time Simulator," Energies, MDPI, vol. 16(19), pages 1-30, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3009-:d:797916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.