IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3220-d804231.html
   My bibliography  Save this article

Detection of Demagnetization Faults in Axial Flux Permanent-Magnet Synchronous Wind Generators

Author

Listed:
  • Apostolos Lamprokostopoulos

    (Department of Electrical and Computer Engineering, University of Patras, 26504 Patras, Greece)

  • Epameinondas Mitronikas

    (Department of Electrical and Computer Engineering, University of Patras, 26504 Patras, Greece)

  • Alexandra Barmpatza

    (Department of Electrical and Computer Engineering, University of Patras, 26504 Patras, Greece)

Abstract

A new method for detecting demagnetization faults in axial flux permanent magnet synchronous wind generators is presented in this study. Demagnetization faults occur in the case of total or partial loss of the magnetic properties of one or more permanent magnets of the machine. Fault signatures appearing in the current or voltage signal due to a demagnetization fault can often be confused with those produced by eccentricity faults, making the discrimination between the two types of faults difficult. The proposed methodology is based on the analysis of the instant power spectrum of the generator, combined with an estimator to derive the permanent magnet flux, based on the machine equations. Short-Time Fourier Transform is proposed as the means for spectrum analysis to ensure performance during variations of the generator speed. Results derived from the experimental tests are presented, which show that the proposed methodology is capable of detecting demagnetization faults and distinguishing them from eccentricity ones under a wide variety of operating conditions.

Suggested Citation

  • Apostolos Lamprokostopoulos & Epameinondas Mitronikas & Alexandra Barmpatza, 2022. "Detection of Demagnetization Faults in Axial Flux Permanent-Magnet Synchronous Wind Generators," Energies, MDPI, vol. 15(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3220-:d:804231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandra C. Barmpatza & Joya C. Kappatou, 2020. "Study of a Combined Demagnetization and Eccentricity Fault in an AFPM Synchronous Generator," Energies, MDPI, vol. 13(21), pages 1-17, October.
    2. Caixia Gao & Yanjie Nie & Jikai Si & Ziyi Fu & Haichao Feng, 2019. "Mode Recognition and Fault Positioning of Permanent Magnet Demagnetization for PMSM," Energies, MDPI, vol. 12(9), pages 1-14, April.
    3. Waseem El Sayed & Mostafa Abd El Geliel & Ahmed Lotfy, 2020. "Fault Diagnosis of PMSG Stator Inter-Turn Fault Using Extended Kalman Filter and Unscented Kalman Filter," Energies, MDPI, vol. 13(11), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syidy Ab Rasid & Konstantinos N. Gyftakis & Markus Mueller, 2023. "Comparative Investigation of Three Diagnostic Methods Applied to Direct-Drive Permanent Magnet Machines Suffering from Demagnetization," Energies, MDPI, vol. 16(6), pages 1-18, March.
    2. Marco Pastura & Mauro Zigliotto, 2024. "Fault Diagnosis in Electrical Machines for Traction Applications: Current Trends and Challenges," Energies, MDPI, vol. 17(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinquan Yu & Haixi Gao & Qiping Chen & Peng Liu & Shuangxia Niu, 2022. "Demagnetization Fault Detection and Location in PMSM Based on Correlation Coefficient of Branch Current Signals," Energies, MDPI, vol. 15(8), pages 1-17, April.
    2. Piotr Mynarek & Janusz Kołodziej & Adrian Młot & Marcin Kowol & Marian Łukaniszyn, 2021. "Influence of a Winding Short-Circuit Fault on Demagnetization Risk and Local Magnetic Forces in V-Shaped Interior PMSM with Distributed and Concentrated Winding," Energies, MDPI, vol. 14(16), pages 1-16, August.
    3. Mojtaba Nasiri & Saleh Mobayen & Behdad Faridpak & Afef Fekih & Arthur Chang, 2020. "Small-Signal Modeling of PMSG-Based Wind Turbine for Low Voltage Ride-Through and Artificial Intelligent Studies," Energies, MDPI, vol. 13(24), pages 1-18, December.
    4. Jin-Cheol Park & Soo-Hwan Park & Jae-Hyun Kim & Soo-Gyung Lee & Geun-Ho Lee & Myung-Seop Lim, 2021. "Diagnosis and Robust Design Optimization of SPMSM Considering Back EMF and Cogging Torque due to Static Eccentricity," Energies, MDPI, vol. 14(10), pages 1-19, May.
    5. Jie Chen & Jiajun Wang & Bo Yan, 2022. "Simulation Research on Deadbeat Direct Torque and Flux Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(9), pages 1-15, April.
    6. Afef Fekih & Hamed Habibi & Silvio Simani, 2022. "Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview," Energies, MDPI, vol. 15(19), pages 1-21, September.
    7. Rodolfo V. Rocha & Renato M. Monaro, 2023. "Algorithm for Fast Detection of Stator Turn Faultsin Variable-Speed Synchronous Generators," Energies, MDPI, vol. 16(5), pages 1-23, March.
    8. Ganesh Mayilsamy & Kumarasamy Palanimuthu & Raghul Venkateswaran & Ruban Periyanayagam Antonysamy & Seong Ryong Lee & Dongran Song & Young Hoon Joo, 2023. "A Review of State Estimation Techniques for Grid-Connected PMSG-Based Wind Turbine Systems," Energies, MDPI, vol. 16(2), pages 1-27, January.
    9. Carlos Candelo-Zuluaga & Jordi-Roger Riba & Dinesh V. Thangamuthu & Antoni Garcia, 2020. "Detection of Partial Demagnetization Faults in Five-Phase Permanent Magnet Assisted Synchronous Reluctance Machines," Energies, MDPI, vol. 13(13), pages 1-17, July.
    10. Jing Tang & Yongheng Yang & Jie Chen & Ruichang Qiu & Zhigang Liu, 2019. "Characteristics Analysis and Measurement of Inverter-Fed Induction Motors for Stator and Rotor Fault Detection," Energies, MDPI, vol. 13(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3220-:d:804231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.