IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4526-d291700.html
   My bibliography  Save this article

Field Weakening Operation Control Strategies of PMSM Based on Feedback Linearization

Author

Listed:
  • Kai Zhou

    (Engineering Research Center of Automotive Electronics Drive Control and System Integration, Ministry of Education. Harbin University of Science and Technology, Harbin 150080, China)

  • Min Ai

    (Engineering Research Center of Automotive Electronics Drive Control and System Integration, Ministry of Education. Harbin University of Science and Technology, Harbin 150080, China)

  • Dongyang Sun

    (Engineering Research Center of Automotive Electronics Drive Control and System Integration, Ministry of Education. Harbin University of Science and Technology, Harbin 150080, China)

  • Ningzhi Jin

    (Engineering Research Center of Automotive Electronics Drive Control and System Integration, Ministry of Education. Harbin University of Science and Technology, Harbin 150080, China)

  • Xiaogang Wu

    (Engineering Research Center of Automotive Electronics Drive Control and System Integration, Ministry of Education. Harbin University of Science and Technology, Harbin 150080, China)

Abstract

Based on current research into the mathematical model of the permanent magnet synchronous motor (PMSM) and the feedback linearization theory, a control strategy established upon feedback linearization is proposed. The Lie differential operation is performed on the output variable to obtain the state feedback of the nonlinear system, and the dynamic characteristics of the original system are transformed into linear dynamic characteristics. A current controller based on the input–output feedback linearization algorithm is designed to realize the input–output linearization control of the PMSM. The current controller decouples the d–q axis current from the flux linkage information of the motor and outputs a control voltage. When the motor speed reaches above the base speed, the field-forward and straight-axis current components are newly distributed to achieve field weakening control, which can realize the smooth transition between the constant torque region and weak magnetic region. Simulation and experimental results show the feasibility and viability of the strategy.

Suggested Citation

  • Kai Zhou & Min Ai & Dongyang Sun & Ningzhi Jin & Xiaogang Wu, 2019. "Field Weakening Operation Control Strategies of PMSM Based on Feedback Linearization," Energies, MDPI, vol. 12(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4526-:d:291700
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4526/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Gu & Tao Li & Xinmin Li & Guozheng Zhang & Zhiqiang Wang, 2019. "An Improved UDE-Based Flux-Weakening Control Strategy for IPMSM," Energies, MDPI, vol. 12(21), pages 1-17, October.
    2. Kai Zhou & Min Ai & Yancheng Sun & Xiaogang Wu & Ran Li, 2019. "PMSM Vector Control Strategy Based on Active Disturbance Rejection Controller," Energies, MDPI, vol. 12(20), pages 1-19, October.
    3. Weiwei Gu & Xiaoyong Zhu & Li Quan & Yi Du, 2015. "Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications," Energies, MDPI, vol. 8(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Chen & Jiajun Wang & Bo Yan, 2022. "Simulation Research on Deadbeat Direct Torque and Flux Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(9), pages 1-15, April.
    2. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    3. Grzegorz Sieklucki & Dawid Kara, 2022. "Design and Modelling of Energy Conversion with the Two-Region Torque Control of a PMSM in an EV Powertrain," Energies, MDPI, vol. 15(13), pages 1-18, July.
    4. Yang Liu & Jin Zhao & Quan Yin, 2021. "Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives," Energies, MDPI, vol. 14(8), pages 1-13, April.
    5. Chao Wu & Jun Yang & Qi Li, 2020. "GPIO-Based Nonlinear Predictive Control for Flux-Weakening Current Control of the IPMSM Servo System," Energies, MDPI, vol. 13(7), pages 1-21, April.
    6. Li Yang & Fuzhao Yang & Weitao Sheng & Kun Zhou & Tianmin Huang, 2021. "Fuzzy Chaos Control of Fractional Order D-PMSG for Wind Turbine with Uncertain Parameters by State Feedback Design," Energies, MDPI, vol. 14(21), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Nicola & Claudiu-Ionel Nicola, 2022. "Improvement of Linear and Nonlinear Control for PMSM Using Computational Intelligence and Reinforcement Learning," Mathematics, MDPI, vol. 10(24), pages 1-34, December.
    2. Oğuz Mısır & Mehmet Akar, 2022. "Efficiency and Core Loss Map Estimation with Machine Learning Based Multivariate Polynomial Regression Model," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
    3. Yuqing Yao & Chunhua Liu & Christopher H.T. Lee, 2018. "Quantitative Comparisons of Six-Phase Outer-Rotor Permanent-Magnet Brushless Machines for Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, August.
    4. Konstantina Bitsi & Sjoerd G. Bosga & Oskar Wallmark, 2022. "Design Aspects and Performance Evaluation of Pole-Phase Changing Induction Machines," Energies, MDPI, vol. 15(19), pages 1-18, September.
    5. Yi Li & Feng Chai & Zaixin Song & Zongyang Li, 2017. "Analysis of Vibrations in Interior Permanent Magnet Synchronous Motors Considering Air-Gap Deformation," Energies, MDPI, vol. 10(9), pages 1-18, August.
    6. Guoyu Chu & Rukmi Dutta & Alireza Pouramin & Muhammed Fazlur Rahman, 2020. "Analysis of Torque Ripple of a Spoke-Type Interior Permanent Magnet Machine," Energies, MDPI, vol. 13(11), pages 1-16, June.
    7. Feng Jiang & Fan Yang & Songjun Sun & Kai Yang, 2022. "Improved Linear Active Disturbance Rejection Control for IPMSM Drives Considering Load Inertia Mismatch," Energies, MDPI, vol. 15(3), pages 1-22, February.
    8. Thanh Anh Huynh & Min-Fu Hsieh, 2018. "Performance Analysis of Permanent Magnet Motors for Electric Vehicles (EV) Traction Considering Driving Cycles," Energies, MDPI, vol. 11(6), pages 1-24, May.
    9. Peixin Liang & Yulong Pei & Feng Chai & Kui Zhao, 2016. "Analytical Calculation of D - and Q -axis Inductance for Interior Permanent Magnet Motors Based on Winding Function Theory," Energies, MDPI, vol. 9(8), pages 1-11, July.
    10. Emad Roshandel & Amin Mahmoudi & Solmaz Kahourzade & Amirmehdi Yazdani & GM Shafiullah, 2021. "Losses in Efficiency Maps of Electric Vehicles: An Overview," Energies, MDPI, vol. 14(22), pages 1-27, November.
    11. Pingyue Zhang & Jingyu Zhang & Yingshun Li & Yuhu Wu, 2020. "Nonlinear Active Disturbance Rejection Control of VGT-EGR System in Diesel Engines," Energies, MDPI, vol. 13(20), pages 1-20, October.
    12. Do-Yun Kim & Jung-Hyo Lee, 2021. "Compensation of Interpolation Error for Look-Up Table-Based PMSM Control Method in Maximum Power Control," Energies, MDPI, vol. 14(17), pages 1-16, September.
    13. Zhengming Shu & Xiaoyong Zhu & Li Quan & Yi Du & Chang Liu, 2017. "Electromagnetic Performance Evaluation of an Outer-Rotor Flux-Switching Permanent Magnet Motor Based on Electrical-Thermal Two-Way Coupling Method," Energies, MDPI, vol. 10(5), pages 1-16, May.
    14. Chengming Zhang & Qingbo Guo & Liyi Li & Mingyi Wang & Tiecheng Wang, 2017. "System Efficiency Improvement for Electric Vehicles Adopting a Permanent Magnet Synchronous Motor Direct Drive System," Energies, MDPI, vol. 10(12), pages 1-27, December.
    15. Jyun-You Chen & Shih-Chin Yang & Kai-Hsiang Tu, 2018. "Comparative Evaluation of a Permanent Magnet Machine Saliency-Based Drive with Sine-Wave and Square-Wave Voltage Injection," Energies, MDPI, vol. 11(9), pages 1-15, August.
    16. Mingfei Huang & Yongting Deng & Hongwen Li & Meng Shao & Jing Liu, 2021. "Integrated Uncertainty/Disturbance Suppression Based on Improved Adaptive Sliding Mode Controller for PMSM Drives," Energies, MDPI, vol. 14(20), pages 1-19, October.
    17. Hui Zhang & Oskar Wallmark, 2017. "Limitations and Constraints of Eddy-Current Loss Models for Interior Permanent-Magnet Motors with Fractional-Slot Concentrated Windings," Energies, MDPI, vol. 10(3), pages 1-19, March.
    18. Damian Caballero & Borja Prieto & Gurutz Artetxe & Ibon Elosegui & Miguel Martinez-Iturralde, 2018. "Node Mapping Criterion for Highly Saturated Interior PMSMs Using Magnetic Reluctance Network," Energies, MDPI, vol. 11(9), pages 1-19, August.
    19. Pham Quoc Khanh & Viet-Anh Truong & Ho Pham Huy Anh, 2021. "Extended Permanent Magnet Synchronous Motors Speed Range Based on the Active and Reactive Power Control of Inverters," Energies, MDPI, vol. 14(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4526-:d:291700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.