IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i18p2297-d637911.html
   My bibliography  Save this article

Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine

Author

Listed:
  • Habib Benbouhenni

    (Faculty of Engineering and Architecture, Department of Electrical & Electronics Engineering, Nisantasi University, Istanbul 34481742, Turkey)

  • Nicu Bizon

    (Faculty of Electronics, Communication and Computers, University of Pitesti, 110040 Pitesti, Romania
    Doctoral School, Polytechnic University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
    ICSI Energy, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania)

Abstract

In this work, a third-order sliding mode controller-based direct flux and torque control (DFTC-TOSMC) for an asynchronous generator (AG) based single-rotor wind turbine (SRWT) is proposed. The traditional direct flux and torque control (DFTC) technology or direct torque control (DTC) with integral proportional (PI) regulator (DFTC-PI) has been widely used in asynchronous generators in recent years due to its higher efficiency compared with the traditional DFTC switching strategy. At the same time, one of its main disadvantages is the significant ripples of magnetic flux and torque that are produced by the classical PI regulator. In order to solve these drawbacks, this work was designed to improve the strategy by removing these regulators. The designed strategy was based on replacing the PI regulators with a TOSMC method that will have the same inputs as these regulators. The numerical simulation was carried out in MATLAB software, and the results obtained can evaluate the effectiveness of the designed strategy relative to the traditional strategy.

Suggested Citation

  • Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2297-:d:637911
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/18/2297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/18/2297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmoud A. Mossa & Hamdi Echeikh & Ahmed A. Zaki Diab & Hassan Haes Alhelou & Pierluigi Siano, 2021. "Comparative Study of Hysteresis Controller, Resonant Controller and Direct Torque Control of Five-Phase IM under Open-Phase Fault Operation," Energies, MDPI, vol. 14(5), pages 1-23, February.
    2. Ayrir, W. & Ourahou, M. & El Hassouni, B. & Haddi, A., 2020. "Direct torque control improvement of a variable speed DFIG based on a fuzzy inference system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 167(C), pages 308-324.
    3. Hamidreza Heidari & Anton Rassõlkin & Toomas Vaimann & Ants Kallaste & Asghar Taheri & Mohammad Hosein Holakooie & Anouar Belahcen, 2019. "A Novel Vector Control Strategy for a Six-Phase Induction Motor with Low Torque Ripples and Harmonic Currents," Energies, MDPI, vol. 12(6), pages 1-14, March.
    4. Ahmed Nasr & Chunyang Gu & Serhiy Bozhko & Chris Gerada, 2020. "Performance Enhancement of Direct Torque-Controlled Permanent Magnet Synchronous Motor with a Flexible Switching Table," Energies, MDPI, vol. 13(8), pages 1-15, April.
    5. Chaoying Xia & Xiaoxin Hou & Feng Chen, 2018. "Flux-Angle-Difference Feedback Control for the Brushless Doubly Fed Machine," Energies, MDPI, vol. 11(1), pages 1-16, January.
    6. Fengxiang Wang & Zhenbin Zhang & Xuezhu Mei & José Rodríguez & Ralph Kennel, 2018. "Advanced Control Strategies of Induction Machine: Field Oriented Control, Direct Torque Control and Model Predictive Control," Energies, MDPI, vol. 11(1), pages 1-13, January.
    7. GuangQing Bao & WuGang Qi & Ting He, 2020. "Direct Torque Control of PMSM with Modified Finite Set Model Predictive Control," Energies, MDPI, vol. 13(1), pages 1-16, January.
    8. Habib Benbouhenni & Nicu Bizon, 2021. "A Synergetic Sliding Mode Controller Applied to Direct Field-Oriented Control of Induction Generator-Based Variable Speed Dual-Rotor Wind Turbines," Energies, MDPI, vol. 14(15), pages 1-17, July.
    9. Arzhang Yousefi-Talouki & Shaghayegh Zalzar & Edris Pouresmaeil, 2019. "Direct Power Control of Matrix Converter-Fed DFIG with Fixed Switching Frequency," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    10. Yanfeng Ma & Jia Liu & Haihang Liu & Shuqiang Zhao, 2018. "Active-Reactive Additional Damping Control of a Doubly-Fed Induction Generator Based on Active Disturbance Rejection Control," Energies, MDPI, vol. 11(5), pages 1-18, May.
    11. Chaoying Xia & Xiaoxin Hou, 2016. "Study on the Static Load Capacity and Synthetic Vector Direct Torque Control of Brushless Doubly Fed Machines," Energies, MDPI, vol. 9(11), pages 1-22, November.
    12. Qiang Song & Yiting Li & Chao Jia, 2018. "A Novel Direct Torque Control Method Based on Asymmetric Boundary Layer Sliding Mode Control for PMSM," Energies, MDPI, vol. 11(3), pages 1-15, March.
    13. Jialing Yao & Meng Wang & Zhihong Li & Yunyi Jia, 2021. "Research on Model Predictive Control for Automobile Active Tilt Based on Active Suspension," Energies, MDPI, vol. 14(3), pages 1-18, January.
    14. Yashar Farajpour & Mohamad Alzayed & Hicham Chaoui & Sousso Kelouwani, 2020. "A Novel Switching Table for a Modified Three-Level Inverter-Fed DTC Drive with Torque and Flux Ripple Minimization," Energies, MDPI, vol. 13(18), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossein Shayeghi & Ali Seifi & Majid Hosseinpour & Nicu Bizon, 2022. "Developing a Generalized Multi-Level Inverter with Reduced Number of Power Electronics Components," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    2. Quanxin Zhu, 2022. "Nonlinear Systems: Dynamics, Control, Optimization and Applications to the Science and Engineering," Mathematics, MDPI, vol. 10(24), pages 1-2, December.
    3. Habib Benbouhenni & Zinelaabidine Boudjema & Nicu Bizon & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-Rotor Wind Turbine System Using PWM Strategy," Energies, MDPI, vol. 15(10), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
    2. Zhenming Li & Xuefan Wang & Lezhi Ou & Xinmai Gao & Fei Xiong, 2019. "Research of the Fundamental Wave of Wound-Rotor Brushless Doubly-Fed Machine," Energies, MDPI, vol. 12(6), pages 1-14, March.
    3. Karol Wróbel & Piotr Serkies & Krzysztof Szabat, 2020. "Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches," Energies, MDPI, vol. 13(5), pages 1-15, March.
    4. Zhanqing Zhou & Xin Gu & Zhiqiang Wang & Guozheng Zhang & Qiang Geng, 2019. "An Improved Torque Control Strategy of PMSM Drive Considering On-Line MTPA Operation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    5. Zhiwei Ruan & Chaohao Kan & Chenglong Chu & Taian Ren & Qiuming Chen, 2019. "Improvements of the Starting Performance of A Novel Brushless Doubly-fed Motor Based on the Composite Coils," Energies, MDPI, vol. 12(6), pages 1-20, March.
    6. Chunyan Li & Fei Guo & Baoquan Kou & Tao Meng, 2021. "Research on the Non-Magnetic Conductor of a PMSM Based on the Principle of Variable Exciting Magnetic Reluctance," Energies, MDPI, vol. 14(2), pages 1-29, January.
    7. Mei Su & Weiyu Jin & Guanguan Zhang & Weiyi Tang & Frede Blaabjerg, 2018. "Internal Model Current Control of Brushless Doubly Fed Induction Machines," Energies, MDPI, vol. 11(7), pages 1-19, July.
    8. Alessandro Benevieri & Gianmarco Maragliano & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2021. "Induction Motor Direct Torque Control with Synchronous PWM," Energies, MDPI, vol. 14(16), pages 1-17, August.
    9. Abdelhak Boudallaa & Ahmed Belkhadir & Mohammed Chennani & Driss Belkhayat & Youssef Zidani & Karim Rhofir, 2023. "Real-Time Implementation of Sensorless DTC-SVM Applied to 4WDEV Using the MRAS Estimator," Energies, MDPI, vol. 16(20), pages 1-23, October.
    10. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Arthur Medeiros & Thales Ramos & José Tavares de Oliveira & Manoel F. Medeiros Júnior, 2020. "Direct Voltage Control of a Doubly Fed Induction Generator by Means of Optimal Strategy," Energies, MDPI, vol. 13(3), pages 1-28, February.
    12. Hamidreza Heidari & Anton Rassõlkin & Ants Kallaste & Toomas Vaimann & Ekaterina Andriushchenko & Anouar Belahcen & Dmitry V. Lukichev, 2021. "A Review of Synchronous Reluctance Motor-Drive Advancements," Sustainability, MDPI, vol. 13(2), pages 1-37, January.
    13. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    14. Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
    15. Kodkin Vladimir & Anikin Alexander, 2021. "On the Physical Nature of Frequency Control Problems of Induction Motor Drives," Energies, MDPI, vol. 14(14), pages 1-15, July.
    16. Omar Sandre Hernandez & Jorge S. Cervantes-Rojas & Jesus P. Ordaz Oliver & Carlos Cuvas Castillo, 2021. "Stator Fixed Deadbeat Predictive Torque and Flux Control of a PMSM Drive with Modulated Duty Cycle," Energies, MDPI, vol. 14(10), pages 1-15, May.
    17. Ahmed G. Mahmoud A. Aziz & Almoataz Y. Abdelaziz & Ziad M. Ali & Ahmed A. Zaki Diab, 2023. "A Comprehensive Examination of Vector-Controlled Induction Motor Drive Techniques," Energies, MDPI, vol. 16(6), pages 1-32, March.
    18. Liqin Wu & Hao Chen & Tingyue Yu & Chengzhi Sun & Lin Wang & Xuerong Ye & Guofu Zhai, 2023. "Robust Design Optimization of the Cogging Torque for a PMSM Based on Manufacturing Uncertainties Analysis and Approximate Modeling," Energies, MDPI, vol. 16(2), pages 1-24, January.
    19. Xusheng Shen & Tao Xie & Tianzhen Wang, 2020. "A Fuzzy Adaptative Backstepping Control Strategy for Marine Current Turbine under Disturbances and Uncertainties," Energies, MDPI, vol. 13(24), pages 1-16, December.
    20. Zahra Malekjamshidi & Mohammad Jafari & Jianguo Zhu & Marco Rivera, 2020. "Design, Implementation, and Stability Analysis of a Space Vector Modulated Direct Matrix Converter for Power Flow Control in a More Reliable and Sustainable Microgrid," Sustainability, MDPI, vol. 12(20), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2297-:d:637911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.