IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3247-d375185.html
   My bibliography  Save this article

Performance Improvement of Matrix Converter Direct Torque Control System

Author

Listed:
  • Bowei Zou

    (College of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China)

  • Yougui Guo

    (College of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China)

  • Xi Xiao

    (Department of Electrical Engineering, Tsinghua University, Beijing 100083, China)

  • Bowen Yang

    (College of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China)

  • Xiao Wang

    (College of Electrical Engineering, Naval Engineering University, Wuhan 430033, China)

  • Mingzhang Shi

    (College of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China)

  • Yulin Tu

    (College of Public Administration, Xiangtan University, Xiangtan 411105, China)

Abstract

In asynchronous motor direct torque control systems, the power supply using the matrix converter can achieve the effect of direct torque control and also has the advantages of the matrix converter. Nonetheless, direct torque control still has drawbacks in terms of pulsation. In this paper, the characteristics of direct torque control method and its existing problems are analyzed in depth. In view of the shortcomings of torque ripple, an improved scheme of torque tracking control is proposed based on conventional control methods. On the basis of theoretical simulation, DSP and FPGA algorithms are designed respectively in C language and VHDL to implement the proposed control strategy. Finally, a highly integrated experimental platform of matrix converter has been developed to verify the proposed control strategy. The simulation and experimental results verify the correctness and effectiveness of the improved scheme.

Suggested Citation

  • Bowei Zou & Yougui Guo & Xi Xiao & Bowen Yang & Xiao Wang & Mingzhang Shi & Yulin Tu, 2020. "Performance Improvement of Matrix Converter Direct Torque Control System," Energies, MDPI, vol. 13(12), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3247-:d:375185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nguyen Dinh Tuyen & Phan Quoc Dzung, 2017. "Space Vector Modulation for an Indirect Matrix Converter with Improved Input Power Factor," Energies, MDPI, vol. 10(5), pages 1-13, April.
    2. Gustavo Gontijo & Matheus Soares & Thiago Tricarico & Robson Dias & Mauricio Aredes & Josep Guerrero, 2019. "Direct Matrix Converter Topologies with Model Predictive Current Control Applied as Power Interfaces in AC, DC, and Hybrid Microgrids in Islanded and Grid-Connected Modes," Energies, MDPI, vol. 12(17), pages 1-28, August.
    3. Yeongsu Bak & Eunsil Lee & Kyo-Beum Lee, 2015. "Indirect Matrix Converter for Hybrid Electric Vehicle Application with Three-Phase and Single-Phase Outputs," Energies, MDPI, vol. 8(5), pages 1-18, April.
    4. Jae Suk Lee, 2018. "Stability Analysis of Deadbeat-Direct Torque and Flux Control for Permanent Magnet Synchronous Motor Drives with Respect to Parameter Variations," Energies, MDPI, vol. 11(8), pages 1-18, August.
    5. GuangQing Bao & WuGang Qi & Ting He, 2020. "Direct Torque Control of PMSM with Modified Finite Set Model Predictive Control," Energies, MDPI, vol. 13(1), pages 1-16, January.
    6. Pavel Karlovsky & Jiri Lettl, 2018. "Induction Motor Drive Direct Torque Control and Predictive Torque Control Comparison Based on Switching Pattern Analysis," Energies, MDPI, vol. 11(7), pages 1-14, July.
    7. Joon B. Park & Xin Wang, 2018. "Sensorless Direct Torque Control of Surface-Mounted Permanent Magnet Synchronous Motors with Nonlinear Kalman Filtering," Energies, MDPI, vol. 11(4), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Benevieri & Gianmarco Maragliano & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2021. "Induction Motor Direct Torque Control with Synchronous PWM," Energies, MDPI, vol. 14(16), pages 1-17, August.
    2. Usha Sengamalai & T. M. Thamizh Thentral & Palanisamy Ramasamy & Mohit Bajaj & Syed Sabir Hussain Bukhari & Ehab E. Elattar & Ahmed Althobaiti & Salah Kamel, 2022. "Mitigation of Circulating Bearing Current in Induction Motor Drive Using Modified ANN Based MRAS for Traction Application," Mathematics, MDPI, vol. 10(8), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Sandre Hernandez & Jorge S. Cervantes-Rojas & Jesus P. Ordaz Oliver & Carlos Cuvas Castillo, 2021. "Stator Fixed Deadbeat Predictive Torque and Flux Control of a PMSM Drive with Modulated Duty Cycle," Energies, MDPI, vol. 14(10), pages 1-15, May.
    2. Borzou Yousefi & Soodabeh Soleymani & Babak Mozafari & Seid Asghar Gholamian, 2017. "Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages," Energies, MDPI, vol. 10(10), pages 1-21, September.
    3. Mourad Sellah & Abdellah Kouzou & Mostefa Mohamed-Seghir & Mohamed Mounir Rezaoui & Ralph Kennel & Mohamed Abdelrahem, 2021. "Improved DTC-SVM Based on Input-Output Feedback Linearization Technique Applied on DOEWIM Powered by Two Dual Indirect Matrix Converters," Energies, MDPI, vol. 14(18), pages 1-23, September.
    4. Jie Chen & Jiajun Wang & Bo Yan, 2022. "Simulation Research on Deadbeat Direct Torque and Flux Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(9), pages 1-15, April.
    5. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    6. Shuo Chen & Xiao Zhang & Xiang Wu & Guojun Tan & Xianchao Chen, 2019. "Sensorless Control for IPMSM Based on Adaptive Super-Twisting Sliding-Mode Observer and Improved Phase-Locked Loop," Energies, MDPI, vol. 12(7), pages 1-19, March.
    7. Baochao Wang & Yangrui Wang & Liguo Feng & Shanlin Jiang & Qian Wang & Jianhui Hu, 2019. "Permanent-Magnet Synchronous Motor Sensorless Control Using Proportional-Integral Linear Observer with Virtual Variables: A Comparative Study with a Sliding Mode Observer," Energies, MDPI, vol. 12(5), pages 1-12, March.
    8. Yong-Dae Kwon & Jin-Hyuk Park & Kyo-Beum Lee, 2018. "Improving Line Current Distortion in Single-Phase Vienna Rectifiers Using Model-Based Predictive Control," Energies, MDPI, vol. 11(5), pages 1-22, May.
    9. Karol Wróbel & Piotr Serkies & Krzysztof Szabat, 2020. "Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches," Energies, MDPI, vol. 13(5), pages 1-15, March.
    10. Zahra Malekjamshidi & Mohammad Jafari & Jianguo Zhu & Marco Rivera, 2020. "Design, Implementation, and Stability Analysis of a Space Vector Modulated Direct Matrix Converter for Power Flow Control in a More Reliable and Sustainable Microgrid," Sustainability, MDPI, vol. 12(20), pages 1-26, October.
    11. Tao Liu & Qiaoling Tong & Qiao Zhang & Qidong Li & Linkai Li & Zhaoxuan Wu, 2018. "A Method to Improve the Response of a Speed Loop by Using a Reduced-Order Extended Kalman Filter," Energies, MDPI, vol. 11(11), pages 1-16, October.
    12. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    13. Tomasz Sieńko & Jerzy Szczepanik & Claudia Martis, 2020. "Reactive Power Transfer via Matrix Converter Controlled by the “One Periodical” Algorithm," Energies, MDPI, vol. 13(3), pages 1-14, February.
    14. Yeongsu Bak, 2022. "Dynamic Characteristic Improvement of Integrated On-Board Charger Using a Model Predictive Control," Energies, MDPI, vol. 15(22), pages 1-16, November.
    15. Yeongsu Bak & June-Seok Lee & Kyo-Beum Lee, 2016. "Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions," Energies, MDPI, vol. 10(1), pages 1-18, December.
    16. Jerzy Szczepanik & Tomasz Sieńko, 2021. "Intuitive Multiphase Matrix Converter Control Procedures Applied to Power-System Phase Shifters," Energies, MDPI, vol. 14(15), pages 1-18, July.
    17. Chaymae Fahassa & Yassine Zahraoui & Mohammed Akherraz & Mohammed Kharrich & Ehab E. Elattar & Salah Kamel, 2022. "Induction Motor DTC Performance Improvement by Inserting Fuzzy Logic Controllers and Twelve-Sector Neural Network Switching Table," Mathematics, MDPI, vol. 10(9), pages 1-14, April.
    18. Yang Liu & Jin Zhao & Quan Yin, 2021. "Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives," Energies, MDPI, vol. 14(8), pages 1-13, April.
    19. Jaime A. Rohten & David N. Dewar & Pericle Zanchetta & Andrea Formentini & Javier A. Muñoz & Carlos R. Baier & José J. Silva, 2021. "Multivariable Deadbeat Control of Power Electronics Converters with Fast Dynamic Response and Fixed Switching Frequency," Energies, MDPI, vol. 14(2), pages 1-16, January.
    20. Gustavo Gontijo & Songda Wang & Tamas Kerekes & Remus Teodorescu, 2020. "New AC–AC Modular Multilevel Converter Solution for Medium-Voltage Machine-Drive Applications: Modular Multilevel Series Converter," Energies, MDPI, vol. 13(14), pages 1-48, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3247-:d:375185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.