IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4041-d828763.html
   My bibliography  Save this article

Model Predictive Control for PMSM Based on Discrete Space Vector Modulation with RLS Parameter Identification

Author

Listed:
  • Hao Yu

    (School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China)

  • Jiajun Wang

    (School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China)

  • Zhuangzhuang Xin

    (School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China)

Abstract

Model Predictive Control (MPC) based on Discrete Space Vector Modulation (DSVM) has the advantages of simple mathematical model and fast dynamic response. It is widely used in permanent magnet synchronous motor (PMSM). Additionally, the control performance of DSVM-MPC is influenced by the accuracy of motor parameters and the select speed of optimal voltage vector. In order to identify motor parameters accurately, model predictive control for PMSM based on discrete space vector modulation with recursive least squares (RLS) parameter identification is proposed in this paper. Additionally, a method to preselect candidate voltage vectors is proposed to select the optimal voltage vector more quickly. The simulation model of RLS-DSVM-MPC is established to simulate the influence of different parameters on PMSM performance. The simulation results show that model predictive control for PMSM based on discrete space vector modulation with RLS parameter identification has a better control performance than that of without RLS parameter identification.

Suggested Citation

  • Hao Yu & Jiajun Wang & Zhuangzhuang Xin, 2022. "Model Predictive Control for PMSM Based on Discrete Space Vector Modulation with RLS Parameter Identification," Energies, MDPI, vol. 15(11), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4041-:d:828763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4041/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4041/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. GuangQing Bao & WuGang Qi & Ting He, 2020. "Direct Torque Control of PMSM with Modified Finite Set Model Predictive Control," Energies, MDPI, vol. 13(1), pages 1-16, January.
    2. Faa-Jeng Lin & Syuan-Yi Chen & Wei-Ting Lin & Chih-Wei Liu, 2021. "An Online Parameter Estimation Using Current Injection with Intelligent Current-Loop Control for IPMSM Drives," Energies, MDPI, vol. 14(23), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiming Liao & Tianran Peng & Jia Liu & Tao Guo, 2023. "Multi-Adjustment Strategy for Phase Current Reconstruction of Permanent Magnet Synchronous Motors Based on Model Predictive Control," Energies, MDPI, vol. 16(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Sandre Hernandez & Jorge S. Cervantes-Rojas & Jesus P. Ordaz Oliver & Carlos Cuvas Castillo, 2021. "Stator Fixed Deadbeat Predictive Torque and Flux Control of a PMSM Drive with Modulated Duty Cycle," Energies, MDPI, vol. 14(10), pages 1-15, May.
    2. Karol Wróbel & Piotr Serkies & Krzysztof Szabat, 2020. "Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches," Energies, MDPI, vol. 13(5), pages 1-15, March.
    3. Peter Stumpf & Tamás Tóth-Katona, 2023. "Recent Achievements in the Control of Interior Permanent-Magnet Synchronous Machine Drives: A Comprehensive Overview of the State of the Art," Energies, MDPI, vol. 16(13), pages 1-46, July.
    4. Yang Liu & Jin Zhao & Quan Yin, 2021. "Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives," Energies, MDPI, vol. 14(8), pages 1-13, April.
    5. Jaime A. Rohten & David N. Dewar & Pericle Zanchetta & Andrea Formentini & Javier A. Muñoz & Carlos R. Baier & José J. Silva, 2021. "Multivariable Deadbeat Control of Power Electronics Converters with Fast Dynamic Response and Fixed Switching Frequency," Energies, MDPI, vol. 14(2), pages 1-16, January.
    6. Bowei Zou & Yougui Guo & Xi Xiao & Bowen Yang & Xiao Wang & Mingzhang Shi & Yulin Tu, 2020. "Performance Improvement of Matrix Converter Direct Torque Control System," Energies, MDPI, vol. 13(12), pages 1-17, June.
    7. Feng Jiang & Fan Yang & Songjun Sun & Kai Yang, 2022. "Improved Linear Active Disturbance Rejection Control for IPMSM Drives Considering Load Inertia Mismatch," Energies, MDPI, vol. 15(3), pages 1-22, February.
    8. Chunyan Li & Fei Guo & Baoquan Kou & Tao Meng, 2021. "Research on the Non-Magnetic Conductor of a PMSM Based on the Principle of Variable Exciting Magnetic Reluctance," Energies, MDPI, vol. 14(2), pages 1-29, January.
    9. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    10. Pankaj Kumar & Yashwant Kashyap & Roystan Vijay Castelino & Anabalagan Karthikeyan & Manjunatha Sharma K. & Debabrata Karmakar & Panagiotis Kosmopoulos, 2023. "Laboratory-Scale Airborne Wind Energy Conversion Emulator Using OPAL-RT Real-Time Simulator," Energies, MDPI, vol. 16(19), pages 1-30, September.
    11. Jie Chen & Jiajun Wang & Bo Yan, 2022. "Simulation Research on Deadbeat Direct Torque and Flux Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(9), pages 1-15, April.
    12. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of PMSM Sensorless Control Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(6), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4041-:d:828763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.