IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1053-d1039455.html
   My bibliography  Save this article

Decoupled Speed and Flux Control of Three-Phase PMSM Based on the Proportional-Resonant Control Method

Author

Listed:
  • Haneen Ghanayem

    (Electrical and Computer Engineering Department, Auburn University, Auburn, AL 36849, USA)

  • Mohammad Alathamneh

    (Electrical and Computer Engineering Department, Auburn University, Auburn, AL 36849, USA)

  • R. M. Nelms

    (Electrical and Computer Engineering Department, Auburn University, Auburn, AL 36849, USA)

Abstract

Field-oriented control (FOC) has achieved great success in permanent magnet synchronous motor (PMSM) control. For the PMSM drive, FOC allows the motor torque and flux to be controlled separately, which means the torque and flux are decoupled from each other. Since the torque control is achieved by the speed controller, it can be considered that the speed and the flux of the PMSM are also decoupled from each other and can be controlled separately. In this paper, we propose a PMSM vector control using decoupled speed and flux controllers based on the proportional-resonant (PR) control method. A flux controller is proposed to control the flux of the PMSM and generate the d-axis reference current, whereas the speed regulator is used to generate the torque as well as the q-axis reference current. The PR controller is proposed to control the dq-axis currents and generate the reference voltages; its design is included.Therefore, decoupled speed and flux controllers are controlled separately using the PR controller. The Matlab/Simulink environment is utilized for the simulation, while the dSPACE DS1104 is used for the experimental work. The proposed control method is simple; there are no flux or torque estimators required, so it can avoid the complexity of estimators in the control scheme. The motor is tested under different scenarios, including flux change, speed change, and load torque change. The simulation and hardware results show the effectiveness of the proposed control method in controlling the the speed and the flux of PMSM with fast motor response and good dynamic performance in the different scenarios.

Suggested Citation

  • Haneen Ghanayem & Mohammad Alathamneh & R. M. Nelms, 2023. "Decoupled Speed and Flux Control of Three-Phase PMSM Based on the Proportional-Resonant Control Method," Energies, MDPI, vol. 16(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1053-:d:1039455
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1053/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1053/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jie Chen & Jiajun Wang & Bo Yan, 2022. "Simulation Research on Deadbeat Direct Torque and Flux Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(9), pages 1-15, April.
    2. Mingcheng Lyu & Gongping Wu & Derong Luo & Fei Rong & Shoudao Huang, 2019. "Robust Nonlinear Predictive Current Control Techniques for PMSM," Energies, MDPI, vol. 12(3), pages 1-19, January.
    3. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Proportional-Resonant Control Method," Energies, MDPI, vol. 15(19), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingyu Yang & Huanyi Zhou & Mohammad Alathamneh & R. M. Nelms, 2023. "An Evolutionary Annealing–Simplex Method for Inductance Value Selection for LCL Filters," Energies, MDPI, vol. 16(10), pages 1-16, May.
    2. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    3. Fabiano C. Rosa & Edson Bim, 2020. "A Constrained Non-Linear Model Predictive Controller for the Rotor Flux-Oriented Control of an Induction Motor Drive," Energies, MDPI, vol. 13(15), pages 1-18, July.
    4. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(19), pages 1-16, September.
    5. Wenjuan Zhang & Gongping Wu & Zhimeng Rao & Jian Zheng & Derong Luo, 2020. "Predictive Power Control of Novel N *3-phase PM Energy Storage Motor for Urban Rail Transit," Energies, MDPI, vol. 13(7), pages 1-17, April.
    6. Wenjuan Zhang & Yu Li & Gongping Wu & Zhimeng Rao & Jian Gao & Derong Luo, 2021. "Robust Predictive Power Control of N *3-Phase PMSM for Flywheel Energy Storage Systems Application," Energies, MDPI, vol. 14(12), pages 1-17, June.
    7. Kai Zhou & Min Ai & Yancheng Sun & Xiaogang Wu & Ran Li, 2019. "PMSM Vector Control Strategy Based on Active Disturbance Rejection Controller," Energies, MDPI, vol. 12(20), pages 1-19, October.
    8. Mohammad Alathamneh & Haneen Ghanayem & R. M. Nelms, 2022. "Bidirectional Power Control for a Three-Phase Grid-Connected Inverter under Unbalanced Grid Conditions Using a Proportional-Resonant and a Modified Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(24), pages 1-23, December.
    9. Yujiao Zhao & Haisheng Yu & Shixian Wang, 2021. "An Improved Super-Twisting High-Order Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 14(19), pages 1-18, September.
    10. Yubo Liu & Junlong Fang & Kezhu Tan & Boyan Huang & Wenshuai He, 2020. "Sliding Mode Observer with Adaptive Parameter Estimation for Sensorless Control of IPMSM," Energies, MDPI, vol. 13(22), pages 1-18, November.
    11. Yoon-Seong Lee & Kyoung-Min Choo & Won-Sang Jeong & Chang-Hee Lee & Junsin Yi & Chung-Yuen Won, 2023. "A Virtual Impedance-Based Flying Start Considering Transient Characteristics for Permanent Magnet Synchronous Machine Drive Systems," Energies, MDPI, vol. 16(3), pages 1-17, January.
    12. Zehao Lyu & Xiang Wu & Jie Gao & Guojun Tan, 2021. "An Improved Finite-Control-Set Model Predictive Current Control for IPMSM under Model Parameter Mismatches," Energies, MDPI, vol. 14(19), pages 1-13, October.
    13. He Wang & Tao Wu & Youguang Guo & Gang Lei & Xinmei Wang, 2023. "Predictive Current Control of Sensorless Linear Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 16(2), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1053-:d:1039455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.