IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2027-d161971.html
   My bibliography  Save this article

Stability Analysis of Deadbeat-Direct Torque and Flux Control for Permanent Magnet Synchronous Motor Drives with Respect to Parameter Variations

Author

Listed:
  • Jae Suk Lee

    (Department of electrical engineering, Chonbuk National University, Jeollabuk-do 54896, Korea)

Abstract

This paper presents a stability analysis and dynamic characteristics investigation of deadbeat-direct torque and flux control (DB-DTFC) of interior permanent magnet synchronous motor (IPMSM) drives with respect to machine parameter variations. Since a DB-DTFC algorithm is developed based on a machine model and parameters, stability with respect to machine parameter variations should be evaluated. Among stability evaluation methods, an eigenvalue (EV) migration is used in this paper because both the stability and dynamic characteristics of a system can be investigated through EV migration. Since an IPMSM drive system is nonlinear, EV migration cannot be directly applied. Therefore, operating point models of DB-DTFC and CVC (current vector control) IPMSM drives are derived to obtain linearized models and to implement EV migration in this paper. Along with DB-DTFC, current vector control (CVC), one of the widely used control algorithms for motor drives, is applied and evaluated at the same operating conditions for performance comparison. For practical analysis, the US06 supplemental federal test procedure (SFTP), one of the dynamic automotive driving cycles, is transformed into torque and speed trajectories and the trajectories are used to investigate the EV migration of DB-DTFC and CVC IPMSM drives. In this paper, the stability and dynamic characteristics of DB-DTFC and CVC IPMSM drives are compared and evaluated through EV migrations with respect to machine parameter variations in simulation and experiment.

Suggested Citation

  • Jae Suk Lee, 2018. "Stability Analysis of Deadbeat-Direct Torque and Flux Control for Permanent Magnet Synchronous Motor Drives with Respect to Parameter Variations," Energies, MDPI, vol. 11(8), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2027-:d:161971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2027/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2027/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo Zhang & Xiangwu Yan & Dongxue Li & Xueyuan Zhang & Jinzuo Han & Xiangning Xiao, 2018. "Stable Operation and Small-Signal Analysis of Multiple Parallel DG Inverters Based on a Virtual Synchronous Generator Scheme," Energies, MDPI, vol. 11(1), pages 1-22, January.
    2. Goran Grdenić & Marko Delimar, 2017. "Small-Signal Stability Analysis of Interaction Modes in VSC MTDC Systems with Voltage Margin Control," Energies, MDPI, vol. 10(7), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Chen & Jiajun Wang & Bo Yan, 2022. "Simulation Research on Deadbeat Direct Torque and Flux Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(9), pages 1-15, April.
    2. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    3. Bowei Zou & Yougui Guo & Xi Xiao & Bowen Yang & Xiao Wang & Mingzhang Shi & Yulin Tu, 2020. "Performance Improvement of Matrix Converter Direct Torque Control System," Energies, MDPI, vol. 13(12), pages 1-17, June.
    4. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Cycles for Spark Ignition Engines Powered by Biofuels," Energies, MDPI, vol. 14(5), pages 1-33, March.
    5. Shun Li & Xinxiu Zhou, 2018. "Sensorless Energy Conservation Control for Permanent Magnet Synchronous Motors Based on a Novel Hybrid Observer Applied in Coal Conveyer Systems," Energies, MDPI, vol. 11(10), pages 1-23, September.
    6. Omar Sandre Hernandez & Jorge S. Cervantes-Rojas & Jesus P. Ordaz Oliver & Carlos Cuvas Castillo, 2021. "Stator Fixed Deadbeat Predictive Torque and Flux Control of a PMSM Drive with Modulated Duty Cycle," Energies, MDPI, vol. 14(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangwu Yan & Jiajia Li & Ling Wang & Shuaishuai Zhao & Tie Li & Zhipeng Lv & Ming Wu, 2018. "Adaptive-MPPT-Based Control of Improved Photovoltaic Virtual Synchronous Generators," Energies, MDPI, vol. 11(7), pages 1-18, July.
    2. Zhilin Lyu & Qing Wei & Yiyi Zhang & Junhui Zhao & Emad Manla, 2018. "Adaptive Virtual Impedance Droop Control Based on Consensus Control of Reactive Current," Energies, MDPI, vol. 11(7), pages 1-17, July.
    3. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2027-:d:161971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.