IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2448-d780335.html
   My bibliography  Save this article

Performance Comparison of Long Short-Term Memory and a Temporal Convolutional Network for State of Health Estimation of a Lithium-Ion Battery using Its Charging Characteristics

Author

Listed:
  • Jikai Bi

    (Department of Mechanical Engineering, Keimyung University, Daegu 42601, Korea)

  • Jae-Cheon Lee

    (Department of Mechanical Engineering, Keimyung University, Daegu 42601, Korea)

  • Hao Liu

    (Department of Mechanical Engineering, Keimyung University, Daegu 42601, Korea)

Abstract

The market for eco-friendly batteries is increasing owing to population growth, environmental pollution, and energy crises. The widespread application of lithium-ion batteries necessitates their state of health (SOH) estimation, which is a popular and difficult area of research. In general, the capacity of a battery is selected as a direct health factor to characterize the degradation state of the battery’s SOH. However, it is difficult to directly measure the actual capacity of a battery. Therefore, this study extracted three features from the current, voltage, and internal resistance of a lithium-ion battery during its charging–discharging process to estimate its SOH. A battery-accelerated aging test system was designed to obtain time series battery degradation data. A performance comparison of lithium-ion battery SOH fitting results was conducted for two different deep learning architectures, a long short-term memory (LSTM) network and temporal convolution network (TCN), which are time series deep learning networks based on a recurrent neural network (RNN) and convolutional neural network (CNN), respectively. The results showed that the proposed method has high prediction accuracy, while the performance of the TCN was 3% better than that of the LSTM regarding the average maximum relative error in SOH estimation of a lithium-ion battery.

Suggested Citation

  • Jikai Bi & Jae-Cheon Lee & Hao Liu, 2022. "Performance Comparison of Long Short-Term Memory and a Temporal Convolutional Network for State of Health Estimation of a Lithium-Ion Battery using Its Charging Characteristics," Energies, MDPI, vol. 15(7), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2448-:d:780335
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2448/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2448/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Halid Kaplan & Kambiz Tehrani & Mo Jamshidi, 2021. "A Fault Diagnosis Design Based on Deep Learning Approach for Electric Vehicle Applications," Energies, MDPI, vol. 14(20), pages 1-14, October.
    2. Jianfang Jia & Jianyu Liang & Yuanhao Shi & Jie Wen & Xiaoqiong Pang & Jianchao Zeng, 2020. "SOH and RUL Prediction of Lithium-Ion Batteries Based on Gaussian Process Regression with Indirect Health Indicators," Energies, MDPI, vol. 13(2), pages 1-20, January.
    3. Ethelbert Ezemobi & Mario Silvagni & Ahmad Mozaffari & Andrea Tonoli & Amir Khajepour, 2022. "State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles under Dynamic Load Conditions," Energies, MDPI, vol. 15(3), pages 1-20, February.
    4. Bowen Jia & Yong Guan & Lifeng Wu, 2019. "A State of Health Estimation Framework for Lithium-Ion Batteries Using Transfer Components Analysis," Energies, MDPI, vol. 12(13), pages 1-14, June.
    5. Ephrem Chemali & Phillip J. Kollmeyer & Matthias Preindl & Youssef Fahmy & Ali Emadi, 2022. "A Convolutional Neural Network Approach for Estimation of Li-Ion Battery State of Health from Charge Profiles," Energies, MDPI, vol. 15(3), pages 1-15, February.
    6. Teresa Pakulska, 2021. "Green Energy in Central and Eastern European (CEE) Countries: New Challenges on the Path to Sustainable Development," Energies, MDPI, vol. 14(4), pages 1-19, February.
    7. Sumukh Surya & Vidya Rao & Sheldon S. Williamson, 2021. "Comprehensive Review on Smart Techniques for Estimation of State of Health for Battery Management System Application," Energies, MDPI, vol. 14(15), pages 1-22, July.
    8. Hu, Chao & Jain, Gaurav & Tamirisa, Prabhakar & Gorka, Tom, 2014. "Method for estimating capacity and predicting remaining useful life of lithium-ion battery," Applied Energy, Elsevier, vol. 126(C), pages 182-189.
    9. Yu Peng & Yandong Hou & Yuchen Song & Jingyue Pang & Datong Liu, 2018. "Lithium-Ion Battery Prognostics with Hybrid Gaussian Process Function Regression," Energies, MDPI, vol. 11(6), pages 1-20, June.
    10. Donghoon Shin & Beomjin Yoon & Seungryeol Yoo, 2021. "Compensation Method for Estimating the State of Charge of Li-Polymer Batteries Using Multiple Long Short-Term Memory Networks Based on the Extended Kalman Filter," Energies, MDPI, vol. 14(2), pages 1-19, January.
    11. Ling Mao & Jie Xu & Jiajun Chen & Jinbin Zhao & Yuebao Wu & Fengjun Yao, 2020. "A LSTM-STW and GS-LM Fusion Method for Lithium-Ion Battery RUL Prediction Based on EEMD," Energies, MDPI, vol. 13(9), pages 1-13, May.
    12. Kuo Yang & Yugui Tang & Zhen Zhang, 2021. "Parameter Identification and State-of-Charge Estimation for Lithium-Ion Batteries Using Separated Time Scales and Extended Kalman Filter," Energies, MDPI, vol. 14(4), pages 1-15, February.
    13. Ye Tian & Chen Lu & Zili Wang & Laifa Tao, 2014. "Artificial Fish Swarm Algorithm-Based Particle Filter for Li-Ion Battery Life Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, July.
    14. Zou, Yuan & Li, Shengbo Eben & Shao, Bing & Wang, Baojin, 2016. "State-space model with non-integer order derivatives for lithium-ion battery," Applied Energy, Elsevier, vol. 161(C), pages 330-336.
    15. Yan Cheng & Xuesen Zhang & Xiaoqiang Wang & Jianhua Li, 2022. "Battery State of Charge Estimation Based on Composite Multiscale Wavelet Transform," Energies, MDPI, vol. 15(6), pages 1-16, March.
    16. Jong-Hyun Lee & In-Soo Lee, 2021. "Lithium Battery SOH Monitoring and an SOC Estimation Algorithm Based on the SOH Result," Energies, MDPI, vol. 14(15), pages 1-16, July.
    17. Sylwia Słupik & Joanna Kos-Łabędowicz & Joanna Trzęsiok, 2021. "Are You a Typical Energy Consumer? Socioeconomic Characteristics of Behavioural Segmentation Representatives of 8 European Countries," Energies, MDPI, vol. 14(19), pages 1-28, September.
    18. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hao & Gao, Jingyi & Kang, Le & Zhang, Yi & Wang, Licheng & Wang, Kai, 2023. "State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network," Energy, Elsevier, vol. 283(C).
    2. Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
    3. Muhammad Ishfaque & Qianwei Dai & Nuhman ul Haq & Khanzaib Jadoon & Syed Muzyan Shahzad & Hammad Tariq Janjuhah, 2022. "Use of Recurrent Neural Network with Long Short-Term Memory for Seepage Prediction at Tarbela Dam, KP, Pakistan," Energies, MDPI, vol. 15(9), pages 1-16, April.
    4. Li, Chuan & Zhang, Huahua & Ding, Ping & Yang, Shuai & Bai, Yun, 2023. "Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Edoardo Lelli & Alessia Musa & Emilio Batista & Daniela Anna Misul & Giovanni Belingardi, 2023. "On-Road Experimental Campaign for Machine Learning Based State of Health Estimation of High-Voltage Batteries in Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-21, June.
    6. Mona Faraji Niri & Jimiama Mafeni Mase & James Marco, 2022. "Performance Evaluation of Convolutional Auto Encoders for the Reconstruction of Li-Ion Battery Electrode Microstructure," Energies, MDPI, vol. 15(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    3. Ethelbert Ezemobi & Mario Silvagni & Ahmad Mozaffari & Andrea Tonoli & Amir Khajepour, 2022. "State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles under Dynamic Load Conditions," Energies, MDPI, vol. 15(3), pages 1-20, February.
    4. Ansari, Amir Babak & Esfahanian, Vahid & Torabi, Farschad, 2016. "Discharge, rest and charge simulation of lead-acid batteries using an efficient reduced order model based on proper orthogonal decomposition," Applied Energy, Elsevier, vol. 173(C), pages 152-167.
    5. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    6. Nagulapati, Vijay Mohan & Lee, Hyunjun & Jung, DaWoon & Brigljevic, Boris & Choi, Yunseok & Lim, Hankwon, 2021. "Capacity estimation of batteries: Influence of training dataset size and diversity on data driven prognostic models," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Pablo Carrasco Ortega & Pablo Durán Gómez & Julio César Mérida Sánchez & Fernando Echevarría Camarero & Ángel Á. Pardiñas, 2023. "Battery Energy Storage Systems for the New Electricity Market Landscape: Modeling, State Diagnostics, Management, and Viability—A Review," Energies, MDPI, vol. 16(17), pages 1-51, August.
    9. Mehta, Rohit & Gupta, Amit, 2024. "Mathematical modelling of electrochemical, thermal and degradation processes in lithium-ion cells—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Zhonghua Yun & Wenhu Qin & Weipeng Shi & Peng Ping, 2020. "State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach," Energies, MDPI, vol. 13(18), pages 1-22, September.
    11. Kurucan, Mehmet & Özbaltan, Mete & Yetgin, Zeki & Alkaya, Alkan, 2024. "Applications of artificial neural network based battery management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Liu, Kailong & Ashwin, T.R. & Hu, Xiaosong & Lucu, Mattin & Widanage, W. Dhammika, 2020. "An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Li, Huan & Xu, Wenhua & Fernandez, Carlos, 2022. "An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 260(C).
    14. Taysa Millena Banik Marques & João Lucas Ferreira dos Santos & Diego Solak Castanho & Mariane Bigarelli Ferreira & Sergio L. Stevan & Carlos Henrique Illa Font & Thiago Antonini Alves & Cassiano Moro , 2023. "An Overview of Methods and Technologies for Estimating Battery State of Charge in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-18, June.
    15. Lu, Zhenfeng & Fei, Zicheng & Wang, Benfei & Yang, Fangfang, 2024. "A feature fusion-based convolutional neural network for battery state-of-health estimation with mining of partial voltage curve," Energy, Elsevier, vol. 288(C).
    16. Jianfang Jia & Jianyu Liang & Yuanhao Shi & Jie Wen & Xiaoqiong Pang & Jianchao Zeng, 2020. "SOH and RUL Prediction of Lithium-Ion Batteries Based on Gaussian Process Regression with Indirect Health Indicators," Energies, MDPI, vol. 13(2), pages 1-20, January.
    17. Edoardo Lelli & Alessia Musa & Emilio Batista & Daniela Anna Misul & Giovanni Belingardi, 2023. "On-Road Experimental Campaign for Machine Learning Based State of Health Estimation of High-Voltage Batteries in Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-21, June.
    18. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    19. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    20. Pranav Nair & Vinay Vakharia & Himanshu Borade & Milind Shah & Vishal Wankhede, 2023. "Predicting Li-Ion Battery Remaining Useful Life: An XDFM-Driven Approach with Explainable AI," Energies, MDPI, vol. 16(15), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2448-:d:780335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.