A LSTM-STW and GS-LM Fusion Method for Lithium-Ion Battery RUL Prediction Based on EEMD
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xiaoqiong Pang & Rui Huang & Jie Wen & Yuanhao Shi & Jianfang Jia & Jianchao Zeng, 2019. "A Lithium-ion Battery RUL Prediction Method Considering the Capacity Regeneration Phenomenon," Energies, MDPI, vol. 12(12), pages 1-14, June.
- Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
- Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
- Pei Wang & Xue Dan & Yong Yang, 2019. "A multi-scale fusion prediction method for lithium-ion battery capacity based on ensemble empirical mode decomposition and nonlinear autoregressive neural networks," International Journal of Distributed Sensor Networks, , vol. 15(3), pages 15501477198, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Can Ding & Yiyuan Zhou & Qingchang Ding & Kaiming Li, 2022. "Integrated Carbon-Capture-Based Low-Carbon Economic Dispatch of Power Systems Based on EEMD-LSTM-SVR Wind Power Forecasting," Energies, MDPI, vol. 15(5), pages 1-27, February.
- Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
- Konstantin Zadiran & Maxim Shcherbakov, 2023. "New Method of Degradation Process Identification for Reliability-Centered Maintenance of Energy Equipment," Energies, MDPI, vol. 16(2), pages 1-21, January.
- Jikai Bi & Jae-Cheon Lee & Hao Liu, 2022. "Performance Comparison of Long Short-Term Memory and a Temporal Convolutional Network for State of Health Estimation of a Lithium-Ion Battery using Its Charging Characteristics," Energies, MDPI, vol. 15(7), pages 1-24, March.
- Zhu, Tao & Wang, Shunli & Fan, Yongcun & Hai, Nan & Huang, Qi & Fernandez, Carlos, 2024. "An improved dung beetle optimizer- hybrid kernel least square support vector regression algorithm for state of health estimation of lithium-ion batteries based on variational model decomposition," Energy, Elsevier, vol. 306(C).
- Zhonghua Yun & Wenhu Qin & Weipeng Shi & Peng Ping, 2020. "State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach," Energies, MDPI, vol. 13(18), pages 1-22, September.
- Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Yang, Yixin, 2021. "A machine-learning prediction method of lithium-ion battery life based on charge process for different applications," Applied Energy, Elsevier, vol. 292(C).
- Tianfei Sun & Bizhong Xia & Yifan Liu & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2019. "A Novel Hybrid Prognostic Approach for Remaining Useful Life Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 12(19), pages 1-22, September.
- Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach," Sustainability, MDPI, vol. 13(23), pages 1-25, December.
- Felipe Salinas & Julia Kowal, 2020. "Classifying Aged Li-Ion Cells from Notebook Batteries," Sustainability, MDPI, vol. 12(9), pages 1-17, April.
- Jingxi Yang & Matthew Beatty & Dani Strickland & Mina Abedi-Varnosfaderani & Joe Warren, 2023. "Second-Life Battery Capacity Estimation and Method Comparison," Energies, MDPI, vol. 16(7), pages 1-17, April.
- Xu, Xiaodong & Tang, Shengjin & Yu, Chuanqiang & Xie, Jian & Han, Xuebing & Ouyang, Minggao, 2021. "Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
- Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
- Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
- Yan, Lisen & Peng, Jun & Gao, Dianzhu & Wu, Yue & Liu, Yongjie & Li, Heng & Liu, Weirong & Huang, Zhiwu, 2022. "A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery," Energy, Elsevier, vol. 243(C).
- Bai, Guangxing & Su, Yunsheng & Rahman, Maliha Maisha & Wang, Zequn, 2023. "Prognostics of Lithium-Ion batteries using knowledge-constrained machine learning and Kalman filtering," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Development of energy management system based on a rule-based power distribution strategy for hybrid power sources," Energy, Elsevier, vol. 175(C), pages 1055-1066.
- Haipeng Pan & Chengte Chen & Minming Gu, 2021. "A State of Health Estimation Method for Lithium-Ion Batteries Based on Improved Particle Filter Considering Capacity Regeneration," Energies, MDPI, vol. 14(16), pages 1-12, August.
- Haitao Min & Yukun Yan & Weiyi Sun & Yuanbin Yu & Rui Jiang & Fanyu Meng, 2023. "Construction and Estimation of Battery State of Health Using a De-LSTM Model Based on Real Driving Data," Energies, MDPI, vol. 16(24), pages 1-23, December.
- Wenyu Qu & Guici Chen & Tingting Zhang, 2022. "An Adaptive Noise Reduction Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 15(19), pages 1-18, October.
- Liu, Zhi-Feng & Huang, Ya-He & Zhang, Shu-Rui & Luo, Xing-Fu & Chen, Xiao-Rui & Lin, Jun-Jie & Tang, Yu & Guo, Liang & Li, Ji-Xiang, 2025. "A collaborative interaction gate-based deep learning model with optimal bandwidth adjustment strategies for lithium-ion battery capacity point-interval forecasting," Applied Energy, Elsevier, vol. 377(PD).
More about this item
Keywords
LSTM-STW; GS-LM; lithium-ion battery; RUL prediction; EEMD; higher accuracy; capacity sudden increase; prediction starting point;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2380-:d:356008. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.