IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/564894.html
   My bibliography  Save this article

Artificial Fish Swarm Algorithm-Based Particle Filter for Li-Ion Battery Life Prediction

Author

Listed:
  • Ye Tian
  • Chen Lu
  • Zili Wang
  • Laifa Tao

Abstract

An intelligent online prognostic approach is proposed for predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries based on artificial fish swarm algorithm (AFSA) and particle filter (PF), which is an integrated approach combining model-based method with data-driven method. The parameters, used in the empirical model which is based on the capacity fade trends of Li-ion batteries, are identified dependent on the tracking ability of PF. AFSA-PF aims to improve the performance of the basic PF. By driving the prior particles to the domain with high likelihood, AFSA-PF allows global optimization, prevents particle degeneracy, thereby improving particle distribution and increasing prediction accuracy and algorithm convergence. Data provided by NASA are used to verify this approach and compare it with basic PF and regularized PF. AFSA-PF is shown to be more accurate and precise.

Suggested Citation

  • Ye Tian & Chen Lu & Zili Wang & Laifa Tao, 2014. "Artificial Fish Swarm Algorithm-Based Particle Filter for Li-Ion Battery Life Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, July.
  • Handle: RePEc:hin:jnlmpe:564894
    DOI: 10.1155/2014/564894
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/564894.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/564894.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/564894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Pan & Liu, Xiaojuan & Li, Huiqin & Huang, Zequan & Zhang, Ke & Shao, Long & Abedinia, Oveis, 2021. "Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Jikai Bi & Jae-Cheon Lee & Hao Liu, 2022. "Performance Comparison of Long Short-Term Memory and a Temporal Convolutional Network for State of Health Estimation of a Lithium-Ion Battery using Its Charging Characteristics," Energies, MDPI, vol. 15(7), pages 1-24, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:564894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.