IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223021369.html
   My bibliography  Save this article

State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network

Author

Listed:
  • Zhang, Hao
  • Gao, Jingyi
  • Kang, Le
  • Zhang, Yi
  • Wang, Licheng
  • Wang, Kai

Abstract

Lithium-ion batteries (LIBs) need to maintain high energy efficiency and power level in several application scenario. Accurate state of health (SOH) forecast is essential for designing a safe and reliable battery management systems (BMS). Temporal convolutional network (TCN) is a prevailing deep learning method for estimating the SOH of lithium-ion batteries. However, the hyperparameters in the network are usually difficult to predefine, which poses a challenge for the SOH estimation accuracy in real-world. To solve this problem, this paper proposes a data-driven estimation approach, where the TCN is combined with the modified flower pollination algorithm (MFPA) to determine the network topology. After hyperparameter optimization, the external sensor raw data and identified ohmic resistances trajectories in the equivalent circuits model (ECM) are both input to the TCN model to estimate SOH of LIBs. In contrast to prior approaches for feature extraction, this method is not only conductive to improve SOH estimation accuracy, but also can reduce on-board estimation computing burden. We carry out experiments on the same type of cells from NASA public data resources. The experimental results systematically validate the superiority of the proposed method, which covers high estimation accuracy, great robustness to varied training set and satisfied universality to different batteries.

Suggested Citation

  • Zhang, Hao & Gao, Jingyi & Kang, Le & Zhang, Yi & Wang, Licheng & Wang, Kai, 2023. "State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223021369
    DOI: 10.1016/j.energy.2023.128742
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223021369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maosong Fan & Mengmeng Geng & Kai Yang & Mingjie Zhang & Hao Liu, 2023. "State of Health Estimation of Lithium-Ion Battery Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(8), pages 1-14, April.
    2. Zhenhua Cui & Jiyong Dai & Jianrui Sun & Dezhi Li & Licheng Wang & Kai Wang & A. M. Bastos Pereira, 2022. "Hybrid Methods Using Neural Network and Kalman Filter for the State of Charge Estimation of Lithium-Ion Battery," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-11, May.
    3. Li, Yihuan & Li, Kang & Liu, Xuan & Li, Xiang & Zhang, Li & Rente, Bruno & Sun, Tong & Grattan, Kenneth T.V., 2022. "A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements," Applied Energy, Elsevier, vol. 325(C).
    4. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF," Energy, Elsevier, vol. 259(C).
    5. Zhenxiao Yi & Kun Zhao & Jianrui Sun & Licheng Wang & Kai Wang & Yongzhi Ma & Ali Ahmadian, 2022. "Prediction of the Remaining Useful Life of Supercapacitors," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-8, May.
    6. Wen, Jianping & Chen, Xing & Li, Xianghe & Li, Yikun, 2022. "SOH prediction of lithium battery based on IC curve feature and BP neural network," Energy, Elsevier, vol. 261(PA).
    7. Zhang, Shuxin & Liu, Zhitao & Su, Hongye, 2023. "State of health estimation for lithium-ion batteries on few-shot learning," Energy, Elsevier, vol. 268(C).
    8. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    9. Li, Xining & Ju, Lingling & Geng, Guangchao & Jiang, Quanyuan, 2023. "Data-driven state-of-health estimation for lithium-ion battery based on aging features," Energy, Elsevier, vol. 274(C).
    10. Zheng, Yuejiu & Wang, Jingjing & Qin, Chao & Lu, Languang & Han, Xuebing & Ouyang, Minggao, 2019. "A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 185(C), pages 361-371.
    11. Jikai Bi & Jae-Cheon Lee & Hao Liu, 2022. "Performance Comparison of Long Short-Term Memory and a Temporal Convolutional Network for State of Health Estimation of a Lithium-Ion Battery using Its Charging Characteristics," Energies, MDPI, vol. 15(7), pages 1-24, March.
    12. Wu, Ji & Fang, Leichao & Dong, Guangzhong & Lin, Mingqiang, 2023. "State of health estimation of lithium-ion battery with improved radial basis function neural network," Energy, Elsevier, vol. 262(PB).
    13. Chuanyu Zhang & Chuanxu Cao & Ruiqi Chen & Jiahui Jiang, 2023. "Three-Leg Quasi-Z-Source Inverter with Input Ripple Suppression for Renewable Energy Application," Energies, MDPI, vol. 16(11), pages 1-28, May.
    14. Shen, Jiangwei & Ma, Wensai & Shu, Xing & Shen, Shiquan & Chen, Zheng & Liu, Yonggang, 2023. "Accurate state of health estimation for lithium-ion batteries under random charging scenarios," Energy, Elsevier, vol. 279(C).
    15. Ning Ma & Huaixian Yin & Kai Wang, 2023. "Prediction of the Remaining Useful Life of Supercapacitors at Different Temperatures Based on Improved Long Short-Term Memory," Energies, MDPI, vol. 16(14), pages 1-14, July.
    16. Xu, Huanwei & Wu, Lingfeng & Xiong, Shizhe & Li, Wei & Garg, Akhil & Gao, Liang, 2023. "An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries," Energy, Elsevier, vol. 276(C).
    17. Farmann, Alexander & Sauer, Dirk Uwe, 2018. "Comparative study of reduced order equivalent circuit models for on-board state-of-available-power prediction of lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 225(C), pages 1102-1122.
    18. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
    19. Ming Zhang & Yanshuo Liu & Dezhi Li & Xiaoli Cui & Licheng Wang & Liwei Li & Kai Wang, 2023. "Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries," Energies, MDPI, vol. 16(4), pages 1-16, February.
    20. Bockrath, Steffen & Lorentz, Vincent & Pruckner, Marco, 2023. "State of health estimation of lithium-ion batteries with a temporal convolutional neural network using partial load profiles," Applied Energy, Elsevier, vol. 329(C).
    21. Lin, Mingqiang & Yan, Chenhao & Wang, Wei & Dong, Guangzhong & Meng, Jinhao & Wu, Ji, 2023. "A data-driven approach for estimating state-of-health of lithium-ion batteries considering internal resistance," Energy, Elsevier, vol. 277(C).
    22. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Lei, Zhenzhen & Zhang, Yuanjian, 2023. "State of health estimation for lithium-ion batteries based on hybrid attention and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    23. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Tianyu & Ma, Zhongjing & Zou, Suli & Chen, Zhan & Wang, Peng, 2024. "Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels," Applied Energy, Elsevier, vol. 355(C).
    2. Wang, Fengfei & Tang, Shengjin & Han, Xuebing & Yu, Chuanqiang & Sun, Xiaoyan & Lu, Languang & Ouyang, Minggao, 2024. "Capacity prediction of lithium-ion batteries with fusing aging information," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Jiachi & Han, Te, 2023. "Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data," Energy, Elsevier, vol. 271(C).
    2. Zhang, Wencan & He, Hancheng & Li, Taotao & Yuan, Jiangfeng & Xie, Yi & Long, Zhuoru, 2024. "Lithium-ion battery state of health prognostication employing multi-model fusion approach based on image coding of charging voltage and temperature data," Energy, Elsevier, vol. 296(C).
    3. Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
    4. Chen, Junxiong & Hu, Yuanjiang & Zhu, Qiao & Rashid, Haroon & Li, Hongkun, 2023. "A novel battery health indicator and PSO-LSSVR for LiFePO4 battery SOH estimation during constant current charging," Energy, Elsevier, vol. 282(C).
    5. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Xiao, Renxin & Shen, Jiangwei & Liu, Yu & Liu, Yonggang, 2024. "Online surface temperature prediction and abnormal diagnosis of lithium-ion batteries based on hybrid neural network and fault threshold optimization," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Bao, Zhengyi & Nie, Jiahao & Lin, Huipin & Jiang, Jiahao & He, Zhiwei & Gao, Mingyu, 2023. "A global–local context embedding learning based sequence-free framework for state of health estimation of lithium-ion battery," Energy, Elsevier, vol. 282(C).
    7. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
    8. Meng, Jinhao & You, Yuqiang & Lin, Mingqiang & Wu, Ji & Song, Zhengxiang, 2024. "Multi-scenarios transferable learning framework with few-shot for early lithium-ion battery lifespan trajectory prediction," Energy, Elsevier, vol. 286(C).
    9. Mizutani, Daijiro & Nakazato, Yuto & Ikushima, Rie & Satsukawa, Koki & Kawasaki, Yosuke & Kuwahara, Masao, 2024. "Optimal intervention policy of emergency storage batteries for expressway transportation systems considering deterioration risk during lead time of replacement," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Julan Chen & Guangheng Qi & Kai Wang, 2023. "Synergizing Machine Learning and the Aviation Sector in Lithium-Ion Battery Applications: A Review," Energies, MDPI, vol. 16(17), pages 1-22, August.
    11. Xue, Jingsong & Ma, Wentao & Feng, Xiaoyang & Guo, Peng & Guo, Yaosong & Hu, Xianzhi & Chen, Badong, 2023. "Stacking integrated learning model via ELM and GRU with mixture correntropy loss for robust state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 284(C).
    12. Li, Fang & Min, Yongjun & Zhang, Ying & Zhang, Yong & Zuo, Hongfu & Bai, Fang, 2024. "State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. Huang, Haichi & Bian, Chong & Wu, Mengdan & An, Dong & Yang, Shunkun, 2024. "A novel integrated SOC–SOH estimation framework for whole-life-cycle lithium-ion batteries," Energy, Elsevier, vol. 288(C).
    14. Ning Ma & Huaixian Yin & Kai Wang, 2023. "Prediction of the Remaining Useful Life of Supercapacitors at Different Temperatures Based on Improved Long Short-Term Memory," Energies, MDPI, vol. 16(14), pages 1-14, July.
    15. Xiong, Ran & Wang, Shunli & Huang, Qi & Yu, Chunmei & Fernandez, Carlos & Xiao, Wei & Jia, Jun & Guerrero, Josep M., 2024. "Improved cooperative competitive particle swarm optimization and nonlinear coefficient temperature decreasing simulated annealing-back propagation methods for state of health estimation of energy stor," Energy, Elsevier, vol. 292(C).
    16. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures," Renewable Energy, Elsevier, vol. 198(C), pages 1328-1340.
    17. Xu, Xiaodong & Tang, Shengjin & Han, Xuebing & Lu, Languang & Wu, Yu & Yu, Chuanqiang & Sun, Xiaoyan & Xie, Jian & Feng, Xuning & Ouyang, Minggao, 2023. "Fast capacity prediction of lithium-ion batteries using aging mechanism-informed bidirectional long short-term memory network," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    18. Dezhi Li & Dongfang Yang & Liwei Li & Licheng Wang & Kai Wang, 2022. "Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries," Energies, MDPI, vol. 15(18), pages 1-26, September.
    19. Wang, Siwei & Xiao, Xinping & Ding, Qi, 2024. "A novel fractional system grey prediction model with dynamic delay effect for evaluating the state of health of lithium battery," Energy, Elsevier, vol. 290(C).
    20. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223021369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.