IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1185-d743003.html
   My bibliography  Save this article

A Convolutional Neural Network Approach for Estimation of Li-Ion Battery State of Health from Charge Profiles

Author

Listed:
  • Ephrem Chemali

    (McMaster Automotive Resource Centre (MARC), McMaster University, Hamilton, ON L8P 0A6, Canada)

  • Phillip J. Kollmeyer

    (McMaster Automotive Resource Centre (MARC), McMaster University, Hamilton, ON L8P 0A6, Canada)

  • Matthias Preindl

    (Department of Electrical Engineering, Columbia University in the City of New York, New York, NY 10027, USA)

  • Youssef Fahmy

    (Department of Electrical Engineering, Columbia University in the City of New York, New York, NY 10027, USA)

  • Ali Emadi

    (McMaster Automotive Resource Centre (MARC), McMaster University, Hamilton, ON L8P 0A6, Canada)

Abstract

Intelligent and pragmatic state-of-health (SOH) estimation is critical for the safe and reliable operation of Li-ion batteries, which recently have become ubiquitous for applications such as electrified vehicles, smart grids, smartphones, as well as manned and unmanned aerial vehicles. This paper introduces a convolutional neural network (CNN)-based framework for directly estimating SOH from voltage, current, and temperature measured while the battery is charging. The CNN is trained with data from as many as 28 cells, which were aged at two temperatures using randomized usage profiles. CNNs with between 1 and 6 layers and between 32 and 256 neurons were investigated, and the training data was augmented with noise and error as well to improve accuracy. Importantly, the algorithm was validated for partial charges, as would be common for many applications. Full charges starting between 0 and 95% SOC as well as for multiple ranges ending at less than 100% SOC were tested. The proposed CNN SOH estimation framework achieved a mean average error (MAE) as low as 0.8% over the life of the battery, and still achieved a reasonable MAE of 1.6% when a very small charge window of 85% to 97% SOC was used. While the CNN algorithm is shown to estimate SOH very accurately with partial charge data and two temperatures, further studies could also investigate a wider temperature range and multiple different charge currents or constant power charging.

Suggested Citation

  • Ephrem Chemali & Phillip J. Kollmeyer & Matthias Preindl & Youssef Fahmy & Ali Emadi, 2022. "A Convolutional Neural Network Approach for Estimation of Li-Ion Battery State of Health from Charge Profiles," Energies, MDPI, vol. 15(3), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1185-:d:743003
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1185/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1185/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alireza Rastegarpanah & Jamie Hathaway & Rustam Stolkin, 2021. "Rapid Model-Free State of Health Estimation for End-of-First-Life Electric Vehicle Batteries Using Impedance Spectroscopy," Energies, MDPI, vol. 14(9), pages 1-16, May.
    2. Sungwoo Jo & Sunkyu Jung & Taemoon Roh, 2021. "Battery State-of-Health Estimation Using Machine Learning and Preprocessing with Relative State-of-Charge," Energies, MDPI, vol. 14(21), pages 1-16, November.
    3. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    4. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jikai Bi & Jae-Cheon Lee & Hao Liu, 2022. "Performance Comparison of Long Short-Term Memory and a Temporal Convolutional Network for State of Health Estimation of a Lithium-Ion Battery using Its Charging Characteristics," Energies, MDPI, vol. 15(7), pages 1-24, March.
    2. Lu, Zhenfeng & Fei, Zicheng & Wang, Benfei & Yang, Fangfang, 2024. "A feature fusion-based convolutional neural network for battery state-of-health estimation with mining of partial voltage curve," Energy, Elsevier, vol. 288(C).
    3. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Lei, Zhenzhen & Zhang, Yuanjian, 2023. "State of health estimation for lithium-ion batteries based on hybrid attention and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Edoardo Lelli & Alessia Musa & Emilio Batista & Daniela Anna Misul & Giovanni Belingardi, 2023. "On-Road Experimental Campaign for Machine Learning Based State of Health Estimation of High-Voltage Batteries in Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    2. Ko, Chi-Jyun & Chen, Kuo-Ching & Su, Ting-Wei, 2024. "Differential current in constant-voltage charging mode: A novel tool for state-of-health and state-of-charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 288(C).
    3. Yun Bao & Yuansheng Chen, 2021. "Lithium-Ion Battery Real-Time Diagnosis with Direct Current Impedance Spectroscopy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    4. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    5. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    6. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    7. Yang, Ruixin & Xiong, Rui & Ma, Suxiao & Lin, Xinfan, 2020. "Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks," Applied Energy, Elsevier, vol. 260(C).
    8. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    9. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
    10. Maryam Ghalkhani & Saeid Habibi, 2022. "Review of the Li-Ion Battery, Thermal Management, and AI-Based Battery Management System for EV Application," Energies, MDPI, vol. 16(1), pages 1-16, December.
    11. Shubo Hu & Hui Sun & Feixiang Peng & Wei Zhou & Wenping Cao & Anlong Su & Xiaodong Chen & Mingze Sun, 2018. "Optimization Strategy for Economic Power Dispatch Utilizing Retired EV Batteries as Flexible Loads," Energies, MDPI, vol. 11(7), pages 1-21, June.
    12. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost," Energies, MDPI, vol. 15(15), pages 1-17, July.
    13. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Bianchi, Francesco & Domenghini, Piergiovanni & Cotana, Franco & Wang, Jinwen, 2022. "A techno-economic analysis of a solar PV and DC battery storage system for a community energy sharing," Energy, Elsevier, vol. 244(PB).
    14. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    15. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
    16. Zhang, Zhengjie & Cao, Rui & Zheng, Yifan & Zhang, Lisheng & Guang, Haoran & Liu, Xinhua & Gao, Xinlei & Yang, Shichun, 2024. "Online state of health estimation for lithium-ion batteries based on gene expression programming," Energy, Elsevier, vol. 294(C).
    17. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features," Energy, Elsevier, vol. 283(C).
    18. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    19. Wang, Tianyu & Ma, Zhongjing & Zou, Suli & Chen, Zhan & Wang, Peng, 2024. "Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels," Applied Energy, Elsevier, vol. 355(C).
    20. Wang, Chun & Yang, Ruixin & Yu, Quanqing, 2019. "Wavelet transform based energy management strategies for plug-in hybrid electric vehicles considering temperature uncertainty," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1185-:d:743003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.