IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8089-d958889.html
   My bibliography  Save this article

Power Quality Assessment in a Real Microgrid-Statistical Assessment of Different Long-Term Working Conditions

Author

Listed:
  • Anna Ostrowska

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Łukasz Michalec

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Marek Skarupski

    (Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland)

  • Michał Jasiński

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Tomasz Sikorski

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Paweł Kostyła

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Robert Lis

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Grzegorz Mudrak

    (TAURON Dystrybucja S.A., 31-060 Kraków, Poland)

  • Tomasz Rodziewicz

    (TAURON Dystrybucja S.A., 31-060 Kraków, Poland)

Abstract

Power quality (PQ) becomes a more and more pressing issue for the operation stability of power systems with renewable energy sources. An important aspect of PQ monitoring of distribution networks is to compare the PQ indicators in different operating conditions. This paper evaluates the impact of a microgrid implementation in a real distribution network on power quality indicators at the point of common coupling in an LV network. The study includes a classical assessment of the long-term PQ parameters according to the EN 50160 standard, such as nominal frequency deviations, voltage RMS variations, voltage fluctuations (represented by long-term flicker severity), voltage unbalance and total harmonic distortion. The PQ evaluation is extended in statistical assessment based on cluster analysis. The case study contains 5 weeks of power quality observation results obtained at the assessment point in two different working conditions of the distribution system: before and after implementing the microgrid. The study allows establishing general conclusions regarding a microgrid interconnection in order not to exceed power quality limits and considering the influence of photovoltaic generation on power quality parameters.

Suggested Citation

  • Anna Ostrowska & Łukasz Michalec & Marek Skarupski & Michał Jasiński & Tomasz Sikorski & Paweł Kostyła & Robert Lis & Grzegorz Mudrak & Tomasz Rodziewicz, 2022. "Power Quality Assessment in a Real Microgrid-Statistical Assessment of Different Long-Term Working Conditions," Energies, MDPI, vol. 15(21), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8089-:d:958889
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Divya R. Nair & Manjula G. Nair & Tripta Thakur, 2022. "A Smart Microgrid System with Artificial Intelligence for Power-Sharing and Power Quality Improvement," Energies, MDPI, vol. 15(15), pages 1-20, July.
    2. Andrea Mariscotti, 2021. "Power Quality Phenomena, Standards, and Proposed Metrics for DC Grids," Energies, MDPI, vol. 14(20), pages 1-41, October.
    3. Ning Wang & Shuai Zheng & Weiqiang Gao, 2022. "Microgrid Harmonic Mitigation Strategy Based on the Optimal Allocation of Active Power and Harmonic Mitigation Capacities of Multi-Functional Grid-Connected Inverters," Energies, MDPI, vol. 15(17), pages 1-20, August.
    4. Łukasz Michalec & Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Łukasz Jasiński & Vishnu Suresh, 2021. "Impact of Harmonic Currents of Nonlinear Loads on Power Quality of a Low Voltage Network–Review and Case Study," Energies, MDPI, vol. 14(12), pages 1-19, June.
    5. Józef Paska & Tomasz Surma & Paweł Terlikowski & Krzysztof Zagrajek, 2020. "Electricity Generation from Renewable Energy Sources in Poland as a Part of Commitment to the Polish and EU Energy Policy," Energies, MDPI, vol. 13(16), pages 1-31, August.
    6. Rubén Ortega & Víctor H. García & Adrián L. García-García & Jaime J. Rodriguez & Virgilio Vásquez & Julio C. Sosa-Savedra, 2021. "Modeling and Application of Controllers for a Photovoltaic Inverter for Operation in a Microgrid," Sustainability, MDPI, vol. 13(9), pages 1-27, May.
    7. Howlader, Abdul Motin & Sadoyama, Staci & Roose, Leon R. & Chen, Yan, 2020. "Active power control to mitigate voltage and frequency deviations for the smart grid using smart PV inverters," Applied Energy, Elsevier, vol. 258(C).
    8. Xing Sun & Wanjun Lei & Yuqi Dai & Yilin Yin & Qian Liu, 2022. "Optimization Configuration of Grid-Connected Inverters to Suppress Harmonic Amplification in a Microgrid," Energies, MDPI, vol. 15(14), pages 1-15, July.
    9. Chu Donatus Iweh & Samuel Gyamfi & Emmanuel Tanyi & Eric Effah-Donyina, 2021. "Distributed Generation and Renewable Energy Integration into the Grid: Prerequisites, Push Factors, Practical Options, Issues and Merits," Energies, MDPI, vol. 14(17), pages 1-34, August.
    10. Nihal Ahmed & Adnan Ahmed Sheikh & Farhan Mahboob & Muhammad Sibt e Ali & Elżbieta Jasińska & Michał Jasiński & Zbigniew Leonowicz & Alessandro Burgio, 2022. "Energy Diversification: A Friend or Foe to Economic Growth in Nordic Countries? A Novel Energy Diversification Approach," Energies, MDPI, vol. 15(15), pages 1-15, July.
    11. Babak Arbab-Zavar & Emilio J. Palacios-Garcia & Juan C. Vasquez & Josep M. Guerrero, 2019. "Smart Inverters for Microgrid Applications: A Review," Energies, MDPI, vol. 12(5), pages 1-22, March.
    12. Patrao, Iván & Figueres, Emilio & Garcerá, Gabriel & González-Medina, Raúl, 2015. "Microgrid architectures for low voltage distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 415-424.
    13. Sophie Marchand & Cristian Monsalve & Thorsten Reimann & Wolfram Heckmann & Jakob Ungerland & Hagen Lauer & Stephan Ruhe & Christoph Krauß, 2021. "Microgrid Systems: Towards a Technical Performance Assessment Frame," Energies, MDPI, vol. 14(8), pages 1-23, April.
    14. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    15. Dario Maradin, 2021. "Advantages and Disadvantages of Renewable Energy Sources Utilization," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 176-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rozmysław Mieński & Irena Wasiak & Paweł Kelm, 2023. "Integration of PV Sources in Prosumer Installations Eliminating Their Negative Impact on the Supplying Grid and Optimizing the Microgrid Operation," Energies, MDPI, vol. 16(8), pages 1-17, April.
    2. Hubert Kryszk & Krystyna Kurowska & Renata Marks-Bielska & Stanisław Bielski & Bartłomiej Eźlakowski, 2023. "Barriers and Prospects for the Development of Renewable Energy Sources in Poland during the Energy Crisis," Energies, MDPI, vol. 16(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Hernández-Mayoral & Manuel Madrigal-Martínez & Jesús D. Mina-Antonio & Reynaldo Iracheta-Cortez & Jesús A. Enríquez-Santiago & Omar Rodríguez-Rivera & Gregorio Martínez-Reyes & Edwin Mendoza-, 2023. "A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources," Sustainability, MDPI, vol. 15(12), pages 1-53, June.
    2. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    3. Lilia Tightiz & Hyosik Yang & Mohammad Jalil Piran, 2020. "A Survey on Enhanced Smart Micro-Grid Management System with Modern Wireless Technology Contribution," Energies, MDPI, vol. 13(9), pages 1-21, May.
    4. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    5. Łukasz Michalec & Paweł Kostyła & Zbigniew Leonowicz, 2022. "Supraharmonic Pollution Emitted by Nonlinear Loads in Power Networks—Ongoing Worldwide Research and Upcoming Challenges," Energies, MDPI, vol. 16(1), pages 1-14, December.
    6. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    7. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    8. Polimeni, Simone & Moretti, Luca & Martelli, Emanuele & Leva, Sonia & Manzolini, Giampaolo, 2023. "A novel stochastic model for flexible unit commitment of off-grid microgrids," Applied Energy, Elsevier, vol. 331(C).
    9. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    10. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    11. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    12. Thomas Schmitt & Tobias Rodemann & Jürgen Adamy, 2021. "The Cost of Photovoltaic Forecasting Errors in Microgrid Control with Peak Pricing," Energies, MDPI, vol. 14(9), pages 1-13, April.
    13. Athanasios Ioannis Arvanitidis & Vivek Agarwal & Miltiadis Alamaniotis, 2023. "Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(11), pages 1-23, May.
    14. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.
    15. Ag Sufiyan Abd Hamid & Mohamad Zul Hilmey Makmud & Abu Bakar Abd Rahman & Zuhair Jamain & Adnan Ibrahim, 2021. "Investigation of Potential of Solar Photovoltaic System as an Alternative Electric Supply on the Tropical Island of Mantanani Sabah Malaysia," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    16. Omar A. Beg & Asad Ali Khan & Waqas Ur Rehman & Ali Hassan, 2023. "A Review of AI-Based Cyber-Attack Detection and Mitigation in Microgrids," Energies, MDPI, vol. 16(22), pages 1-23, November.
    17. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    18. Rodrigo Antonio Sbardeloto Kraemer & Douglas Pereira Dias & Alisson Carlos da Silva & Marcos Aurelio Izumida Martins & Mathias Arno Ludwig, 2022. "Cost and Cybersecurity Challenges in the Commissioning of Microgrids in Critical Infrastructure: COGE Case Study," Energies, MDPI, vol. 15(8), pages 1-14, April.
    19. Yuzgec, Ugur & Dokur, Emrah & Balci, Mehmet, 2024. "A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting," Energy, Elsevier, vol. 300(C).
    20. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8089-:d:958889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.