IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7644-d1282816.html
   My bibliography  Save this article

A Review of AI-Based Cyber-Attack Detection and Mitigation in Microgrids

Author

Listed:
  • Omar A. Beg

    (Department of Electrical Engineering, The University of Texas Permian Basin, Odessa, TX 79762, USA
    These authors contributed equally to this work.)

  • Asad Ali Khan

    (Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
    These authors contributed equally to this work.)

  • Waqas Ur Rehman

    (Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA)

  • Ali Hassan

    (Department of Electrical and Computer Engineering, University of Michigan, Dearborn, MI 48126, USA)

Abstract

In this paper, the application and future vision of Artificial Intelligence (AI)-based techniques in microgrids are presented from a cyber-security perspective of physical devices and communication networks. The vulnerabilities of microgrids are investigated under a variety of cyber-attacks targeting sensor measurements, control signals, and information sharing. With the inclusion of communication networks and smart metering devices, the attack surface has increased in microgrids, making them vulnerable to various cyber-attacks. The negative impact of such attacks may render the microgrids out-of-service, and the attacks may propagate throughout the network due to the absence of efficient mitigation approaches. AI-based techniques are being employed to tackle such data-driven cyber-attacks due to their exceptional pattern recognition and learning capabilities. AI-based methods for cyber-attack detection and mitigation that address the cyber-attacks in microgrids are summarized. A case study is presented showing the performance of AI-based cyber-attack mitigation in a distributed cooperative control-based AC microgrid. Finally, future potential research directions are provided that include the application of transfer learning and explainable AI techniques to increase the trust of AI-based models in the microgrid domain.

Suggested Citation

  • Omar A. Beg & Asad Ali Khan & Waqas Ur Rehman & Ali Hassan, 2023. "A Review of AI-Based Cyber-Attack Detection and Mitigation in Microgrids," Energies, MDPI, vol. 16(22), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7644-:d:1282816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7644/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7644/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Divya R. Nair & Manjula G. Nair & Tripta Thakur, 2022. "A Smart Microgrid System with Artificial Intelligence for Power-Sharing and Power Quality Improvement," Energies, MDPI, vol. 15(15), pages 1-20, July.
    2. Tan, Sen & Xie, Peilin & Guerrero, Josep M. & Vasquez, Juan C., 2022. "False Data Injection Cyber-Attacks Detection for Multiple DC Microgrid Clusters," Applied Energy, Elsevier, vol. 310(C).
    3. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    4. Mishra, Sakshi & Anderson, Kate & Miller, Brian & Boyer, Kyle & Warren, Adam, 2020. "Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies," Applied Energy, Elsevier, vol. 264(C).
    5. Smitha Joyce Pinto & Pierluigi Siano & Mimmo Parente, 2023. "Review of Cybersecurity Analysis in Smart Distribution Systems and Future Directions for Using Unsupervised Learning Methods for Cyber Detection," Energies, MDPI, vol. 16(4), pages 1-24, February.
    6. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guy WAIZEL, 2024. "Bridging the AI divide: The evolving arms race between AI-driven cyber attacks and AI-powered cybersecurity defenses," International Conference on Machine Intelligence & Security for Smart Cities (TRUST) Proceedings, Smart-EDU Hub, Faculty of Public Administration, National University of Political Studies & Public Administration, vol. 1, pages 141-156, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    2. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    3. Navid Shirzadi & Hadise Rasoulian & Fuzhan Nasiri & Ursula Eicker, 2022. "Resilience Enhancement of an Urban Microgrid during Off-Grid Mode Operation Using Critical Load Indicators," Energies, MDPI, vol. 15(20), pages 1-15, October.
    4. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Centralized vs. Decentralized Electric Grid Resilience Analysis Using Leontief’s Input–Output Model," Energies, MDPI, vol. 17(6), pages 1-21, March.
    6. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    7. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Ping Chen & Jiawei Gao & Zheng Ji & Han Liang & Yu Peng, 2022. "Do Artificial Intelligence Applications Affect Carbon Emission Performance?—Evidence from Panel Data Analysis of Chinese Cities," Energies, MDPI, vol. 15(15), pages 1-16, August.
    9. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Hanaa Feleafel & Jovana Radulovic & Michel Leseure, 2024. "Should We Have Selfish Microgrids?," Energies, MDPI, vol. 17(16), pages 1-24, August.
    11. Zheng Wan & Hui Li, 2023. "Short-Term Power Load Forecasting Based on Feature Filtering and Error Compensation under Imbalanced Samples," Energies, MDPI, vol. 16(10), pages 1-22, May.
    12. Fangzong Wang & Zuhaib Nishtar, 2024. "Real-Time Load Forecasting and Adaptive Control in Smart Grids Using a Hybrid Neuro-Fuzzy Approach," Energies, MDPI, vol. 17(11), pages 1-24, May.
    13. Mousa Mohammed Khubrani & Shadab Alam, 2023. "Blockchain-Based Microgrid for Safe and Reliable Power Generation and Distribution: A Case Study of Saudi Arabia," Energies, MDPI, vol. 16(16), pages 1-34, August.
    14. Xie, Peilin & Tan, Sen & Bazmohammadi, Najmeh & Guerrero, Josep. M. & Vasquez, Juan. C. & Alcala, Jose Matas & Carreño, Jorge El Mariachet, 2022. "A distributed real-time power management scheme for shipboard zonal multi-microgrid system," Applied Energy, Elsevier, vol. 317(C).
    15. Chen, Chunyu & Cui, Mingjian & Fang, Xin & Ren, Bixing & Chen, Yang, 2020. "Load altering attack-tolerant defense strategy for load frequency control system," Applied Energy, Elsevier, vol. 280(C).
    16. Li, Xiangyu & Luo, Fengji & Li, Chaojie, 2024. "Multi-agent deep reinforcement learning-based autonomous decision-making framework for community virtual power plants," Applied Energy, Elsevier, vol. 360(C).
    17. Yousef Asadi & Mohsen Eskandari & Milad Mansouri & Andrey V. Savkin & Erum Pathan, 2022. "Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    18. Li, Xueping & Wang, Yaokun & Lu, Zhigang, 2023. "Graph-based detection for false data injection attacks in power grid," Energy, Elsevier, vol. 263(PC).
    19. Tabassum, Tambiara & Toker, Onur & Khalghani, Mohammad Reza, 2024. "Cyber–physical anomaly detection for inverter-based microgrid using autoencoder neural network," Applied Energy, Elsevier, vol. 355(C).
    20. Chowdhury, Tamal & Chowdhury, Hemal & Islam, Kazi Sifatul & Sharifi, Ayyoob & Corkish, Richard & Sait, Sadiq M., 2023. "Resilience analysis of a PV/battery system of health care centres in Rohingya refugee camp," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7644-:d:1282816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.