IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12432-d676433.html
   My bibliography  Save this article

Investigation of Potential of Solar Photovoltaic System as an Alternative Electric Supply on the Tropical Island of Mantanani Sabah Malaysia

Author

Listed:
  • Ag Sufiyan Abd Hamid

    (Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
    Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Mohamad Zul Hilmey Makmud

    (Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia)

  • Abu Bakar Abd Rahman

    (Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia)

  • Zuhair Jamain

    (Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia)

  • Adnan Ibrahim

    (Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

Abstract

This article reports on the potential use of a photovoltaic solar system on Mantanani Island. This island has its attractions in terms of flora and fauna as well as the uniqueness of its local community. The electricity supply status of the island is minimal, and the local electricity provider only provides two units of electrical generator that only supply energy from 18:00 to 06:00. This study is motivated by the hypothesis that if the target resident can obtain a better electricity supply, they can generate higher income and improve their standard of living. This study aims to identify the status of solar energy sources, estimate the basic electrical load, and conduct a techno-economic analysis of homestay enterprises of residents. Geostationary satellite data on solar energy resources were gathered and analyzed using Solargis. The electricity load was calculated based on the daily routine activities of the residents and usage of primary electrical appliances. Techno-economic analysis was done by determining the key parameters to calculate the return on investment and payback period. The results showed that Mantanani Island had great potential for implementing a photovoltaic system, by the estimated value of the total annual solar energy and peak sun hour of 1.447 MWh/m 2 /y and 4.05 h, respectively. The variation in total monthly solar energy was minimal, with a range of only 61.3 Wh/m 2 . The calculated electrical load was 7.454 kWh/d. The technoeconomic assessment showed that the return on investment was MYR 3600 per year. However, the value of the payback period varies according to the value of the cost of capital spent. Regarding the cost of capital of this study, the shortest and longest payback periods achievable were 2.78 and 13.89 years, respectively. This calculation is in line with a photovoltaic system with a capacity of 2.2 kWp.

Suggested Citation

  • Ag Sufiyan Abd Hamid & Mohamad Zul Hilmey Makmud & Abu Bakar Abd Rahman & Zuhair Jamain & Adnan Ibrahim, 2021. "Investigation of Potential of Solar Photovoltaic System as an Alternative Electric Supply on the Tropical Island of Mantanani Sabah Malaysia," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12432-:d:676433
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sohani, Ali & Sayyaadi, Hoseyn, 2020. "Providing an accurate method for obtaining the efficiency of a photovoltaic solar module," Renewable Energy, Elsevier, vol. 156(C), pages 395-406.
    2. Wong, S.L. & Ngadi, Norzita & Abdullah, Tuan Amran Tuan & Inuwa, I.M., 2015. "Recent advances of feed-in tariff in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 42-52.
    3. ELkhadraoui, Aymen & Kooli, Sami & Hamdi, Ilhem & Farhat, Abdelhamid, 2015. "Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape," Renewable Energy, Elsevier, vol. 77(C), pages 1-8.
    4. Yeon-Ju Choi & Byeong-Chan Oh & Moses Amoasi Acquah & Dong-Min Kim & Sung-Yul Kim, 2021. "Optimal Operation of a Hybrid Power System as an Island Microgrid in South-Korea," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    5. Lau, K.Y. & Tan, C.W. & Yatim, A.H.M., 2015. "Photovoltaic systems for Malaysian islands: Effects of interest rates, diesel prices and load sizes," Energy, Elsevier, vol. 83(C), pages 204-216.
    6. Ang, James B., 2008. "Determinants of foreign direct investment in Malaysia," Journal of Policy Modeling, Elsevier, vol. 30(1), pages 185-189.
    7. Wan Syakirah Wan Abdullah & Miszaina Osman & Mohd Zainal Abidin Ab Kadir & Renuga Verayiah, 2019. "The Potential and Status of Renewable Energy Development in Malaysia," Energies, MDPI, vol. 12(12), pages 1-16, June.
    8. Chew Ging Lee, 2009. "Foreign direct investment, pollution and economic growth: evidence from Malaysia," Applied Economics, Taylor & Francis Journals, vol. 41(13), pages 1709-1716.
    9. Rubén Ortega & Víctor H. García & Adrián L. García-García & Jaime J. Rodriguez & Virgilio Vásquez & Julio C. Sosa-Savedra, 2021. "Modeling and Application of Controllers for a Photovoltaic Inverter for Operation in a Microgrid," Sustainability, MDPI, vol. 13(9), pages 1-27, May.
    10. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    11. Ashourian, M.H. & Cherati, S.M. & Mohd Zin, A.A. & Niknam, N. & Mokhtar, A.S. & Anwari, M., 2013. "Optimal green energy management for island resorts in Malaysia," Renewable Energy, Elsevier, vol. 51(C), pages 36-45.
    12. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    13. Arminen, Heli & Menegaki, Angeliki N., 2019. "Corruption, climate and the energy-environment-growth nexus," Energy Economics, Elsevier, vol. 80(C), pages 621-634.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Aqil Afham Rahmat & Ag Sufiyan Abd Hamid & Yuanshen Lu & Muhammad Amir Aziat Ishak & Shaikh Zishan Suheel & Ahmad Fazlizan & Adnan Ibrahim, 2022. "An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    2. Faisal Nawab & Ag Sufiyan Abd Hamid & Muhammad Arif & Tufial A. Khan & Amir Naveed & Muhammad Sadiq & Sahibzada Imad Ud din & Adnan Ibrahim, 2022. "Solar–Biogas Microgrid: A Strategy for the Sustainable Development of Rural Communities in Pakistan," Sustainability, MDPI, vol. 14(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
    2. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    3. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    4. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).
    5. Mohammed Baqer Zaki Yahya Al-quraishi & Shamsul Sarip & Hazilah Mad Kaidi & Jorge Alfredo Ardila-Rey & Firdaus Muhammad-Sukki, 2022. "A CFD Analysis for Novel Close-Ended Deflector for Vertical Water Turbines," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    6. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    7. Alaa A. F. Husain & Maryam Huda Ahmad Phesal & Mohd Zainal Abidin Ab Kadir & Ungku Anisa Ungku Amirulddin & Abdulhadi H. J. Junaidi, 2021. "A Decade of Transitioning Malaysia toward a High-Solar PV Energy Penetration Nation," Sustainability, MDPI, vol. 13(17), pages 1-16, September.
    8. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    9. Mohd Chachuli, Fairuz Suzana & Ahmad Ludin, Norasikin & Md Jedi, Muhamad Alias & Hamid, Norul Hisham, 2021. "Transition of renewable energy policies in Malaysia: Benchmarking with data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    11. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    12. Li, Changsheng & Wang, Haiyu & Miao, Hong & Ye, Bin, 2017. "The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China," Applied Energy, Elsevier, vol. 190(C), pages 204-212.
    13. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
    14. Philip, Nadiya & Duraipandi, Sruthi & Sreekumar, A., 2022. "Techno-economic analysis of greenhouse solar dryer for drying agricultural produce," Renewable Energy, Elsevier, vol. 199(C), pages 613-627.
    15. Rudra P. Pradhan, Mak B. Arvin, & Mahendhiran Nair, Jay Mittal, & Neville R. Norman, 2017. "Telecommunications infrastructure and usage and the FDI–growth nexus: evidence from Asian-21 countries "Abstract: This paper examines causal relationships between telecommunications infrastructur," Department of Economics - Working Papers Series 2032, The University of Melbourne.
    16. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
    17. Djula Borozan, 2023. "Institutions and Environmentally Adjusted Efficiency," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(4), pages 4489-4510, December.
    18. Ilhan-Nas, Tulay & Okan, Tarhan & Tatoglu, Ekrem & Demirbag, Mehmet & Wood, Geoffrey & Glaister, Keith W., 2018. "Board composition, family ownership, institutional distance and the foreign equity ownership strategies of Turkish MNEs," Journal of World Business, Elsevier, vol. 53(6), pages 862-879.
    19. Alexander Hijzen & Sébastien Jean & Thierry Mayer, 2011. "The effects at home of initiating production abroad: evidence from matched French firms," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 147(3), pages 457-483, September.
    20. C. Seri & A. de Juan Fernandez, 2021. "The relationship between economic growth and environment. Testing the EKC hypothesis for Latin American countries," Papers 2105.11405, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12432-:d:676433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.