IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p840-d210774.html
   My bibliography  Save this article

Smart Inverters for Microgrid Applications: A Review

Author

Listed:
  • Babak Arbab-Zavar

    (Department of Energy Technology, Aalborg University, Pontoppidanstraede 111, DK-9220 Aalborg, Denmark)

  • Emilio J. Palacios-Garcia

    (Department of Energy Technology, Aalborg University, Pontoppidanstraede 111, DK-9220 Aalborg, Denmark)

  • Juan C. Vasquez

    (Department of Energy Technology, Aalborg University, Pontoppidanstraede 111, DK-9220 Aalborg, Denmark)

  • Josep M. Guerrero

    (Department of Energy Technology, Aalborg University, Pontoppidanstraede 111, DK-9220 Aalborg, Denmark)

Abstract

In a microgrid, with several distributed generators (DGs), energy storage units and loads, one of the most important considerations is the control of power converters. These converters implement interfaces between the DGs and the microgrid bus. In order to achieve higher functionality, efficiency and reliability, in addition to improving the control algorithms it is beneficial to equip the inverters with “smart” features. One interpretation of “smartness” refers to minimizing the requirement of communication and therefore switching from centralized to decentralized control. At the same time, being equipped with efficient and state of the art communication protocols also indicates “smartness” since the requirement of communication cannot be completely omitted. A “smart inverter” should offer some features such as plug and play, self-awareness, adaptability, autonomy and cooperativeness. These features are introduced and comprehensively explained in this article. One contribution discussed here is the possibility of achieving long-range wireless communication between inverters to empower various control schemes. Although current efforts aim to modify and improve power converters in a way that they can operate communication free, if a suitable and functional communication protocol is available, it will improve the accuracy, speed and robustness of them.

Suggested Citation

  • Babak Arbab-Zavar & Emilio J. Palacios-Garcia & Juan C. Vasquez & Josep M. Guerrero, 2019. "Smart Inverters for Microgrid Applications: A Review," Energies, MDPI, vol. 12(5), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:840-:d:210774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Usman, Ahmad & Shami, Sajjad Haider, 2013. "Evolution of Communication Technologies for Smart Grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 191-199.
    2. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    3. Shaukat, N. & Ali, S.M. & Mehmood, C.A. & Khan, B. & Jawad, M. & Farid, U. & Ullah, Z. & Anwar, S.M. & Majid, M., 2018. "A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1453-1475.
    4. Kabalci, Yasin, 2016. "A survey on smart metering and smart grid communication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 302-318.
    5. Li, Canbing & Cao, Chi & Cao, Yijia & Kuang, Yonghong & Zeng, Long & Fang, Baling, 2014. "A review of islanding detection methods for microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 211-220.
    6. van Haaren, Rob & Morjaria, Mahesh & Fthenakis, Vasilis, 2015. "An energy storage algorithm for ramp rate control of utility scale PV (photovoltaics) plants," Energy, Elsevier, vol. 91(C), pages 894-902.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shriram S. Rangarajan & Chandan Kumar Shiva & AVV Sudhakar & Umashankar Subramaniam & E. Randolph Collins & Tomonobu Senjyu, 2023. "Avant-Garde Solar Plants with Artificial Intelligence and Moonlighting Capabilities as Smart Inverters in a Smart Grid," Energies, MDPI, vol. 16(3), pages 1-30, January.
    2. Babak Arbab-Zavar & Emilio J. Palacios-Garcia & Juan C. Vasquez & Josep M. Guerrero, 2021. "Message Queuing Telemetry Transport Communication Infrastructure for Grid-Connected AC Microgrids Management," Energies, MDPI, vol. 14(18), pages 1-31, September.
    3. Bhuiyan, Erphan A. & Hossain, Md. Zahid & Muyeen, S.M. & Fahim, Shahriar Rahman & Sarker, Subrata K. & Das, Sajal K., 2021. "Towards next generation virtual power plant: Technology review and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    5. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    6. Sen Zhang & Jianfeng Zhao & Zhihong Zhao & Kangli Liu & Pengyu Wang & Bin Yang, 2019. "Decoupled Current Controller Based on Reduced Order Generalized Integrator for Three-Phase Grid-Connected VSCs in Distributed System," Energies, MDPI, vol. 12(12), pages 1-15, June.
    7. Maysam Abbasi & Ehsan Abbasi & Li Li & Ricardo P. Aguilera & Dylan Lu & Fei Wang, 2023. "Review on the Microgrid Concept, Structures, Components, Communication Systems, and Control Methods," Energies, MDPI, vol. 16(1), pages 1-36, January.
    8. Lucas V. Bellinaso & Edivan L. Carvalho & Rafael Cardoso & Leandro Michels, 2021. "Price-Response Matrices Design Methodology for Electrical Energy Management Systems Based on DC Bus Signalling," Energies, MDPI, vol. 14(6), pages 1-19, March.
    9. Herenčić, Lin & Kirac, Mislav & Keko, Hrvoje & Kuzle, Igor & Rajšl, Ivan, 2022. "Automated energy sharing in MV and LV distribution grids within an energy community: A case for Croatian city of Križevci with a hybrid renewable system," Renewable Energy, Elsevier, vol. 191(C), pages 176-194.
    10. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    11. Antonio Moreno-Munoz, 2019. "Special Issue “Nanogrids, Microgrids, and the Internet of Things (IoT): Towards the Digital Energy Network”," Energies, MDPI, vol. 12(20), pages 1-3, October.
    12. Lilia Tightiz & Hyosik Yang & Mohammad Jalil Piran, 2020. "A Survey on Enhanced Smart Micro-Grid Management System with Modern Wireless Technology Contribution," Energies, MDPI, vol. 13(9), pages 1-21, May.
    13. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    14. Óscar Gonzales-Zurita & Jean-Michel Clairand & Elisa Peñalvo-López & Guillermo Escrivá-Escrivá, 2020. "Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids," Energies, MDPI, vol. 13(13), pages 1-29, July.
    15. Ryuto Shigenobu & Akito Nakadomari & Ying-Yi Hong & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2020. "Optimization of Voltage Unbalance Compensation by Smart Inverter," Energies, MDPI, vol. 13(18), pages 1-22, September.
    16. Augusto M. S. Alonso & Luis De Oro Arenas & Danilo I. Brandao & Elisabetta Tedeschi & Ricardo Q. Machado & Fernando P. Marafão, 2022. "Current-Based Coordination of Distributed Energy Resources in a Grid-Connected Low-Voltage Microgrid: An Experimental Validation of Adverse Operational Scenarios," Energies, MDPI, vol. 15(17), pages 1-26, September.
    17. Anna Ostrowska & Łukasz Michalec & Marek Skarupski & Michał Jasiński & Tomasz Sikorski & Paweł Kostyła & Robert Lis & Grzegorz Mudrak & Tomasz Rodziewicz, 2022. "Power Quality Assessment in a Real Microgrid-Statistical Assessment of Different Long-Term Working Conditions," Energies, MDPI, vol. 15(21), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    2. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Omowunmi Mary Longe & Khmaies Ouahada, 2018. "Mitigating Household Energy Poverty through Energy Expenditure Affordability Algorithm in a Smart Grid," Energies, MDPI, vol. 11(4), pages 1-17, April.
    4. Pereira, Guillermo Ivan & Specht, Jan Martin & Silva, Patrícia Pereira & Madlener, Reinhard, 2018. "Technology, business model, and market design adaptation toward smart electricity distribution: Insights for policy making," Energy Policy, Elsevier, vol. 121(C), pages 426-440.
    5. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    6. Pere Ariza-Montobbio & Katharine Farrell & Gonzalo Gamboa & Jesus Ramos-Martin, 2014. "Integrating energy and land-use planning: socio-metabolic profiles along the rural–urban continuum in Catalonia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(4), pages 925-956, August.
    7. Masood, Bilal & Baig, Sobia, 2016. "Standardization and deployment scenario of next generation NB-PLC technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1033-1047.
    8. Md Mainul Islam & Mahmood Nagrial & Jamal Rizk & Ali Hellany, 2021. "General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review," Sustainability, MDPI, vol. 13(16), pages 1-45, August.
    9. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    10. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    11. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    12. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    13. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    14. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    15. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    16. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    17. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.
    18. Nguyen, Hieu Trung & Battula, Swathi & Takkala, Rohit Reddy & Wang, Zhaoyu & Tesfatsion, Leigh S., 2018. "Transactive Energy Design for Integrated Transmission and Distribution Systems," ISU General Staff Papers 201802280800001000, Iowa State University, Department of Economics.
    19. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    20. MHD Nour Hindia & Faizan Qamar & Mohammad B. Majed & Tharek Abd Rahman & Iraj S. Amiri, 2019. "Enabling remote-control for the power sub-stations over LTE-A networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 70(1), pages 37-53, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:840-:d:210774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.