IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5409-d872615.html
   My bibliography  Save this article

A Smart Microgrid System with Artificial Intelligence for Power-Sharing and Power Quality Improvement

Author

Listed:
  • Divya R. Nair

    (Department of Electrical and Electronics Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
    These authors contributed equally to this work.)

  • Manjula G. Nair

    (Department of Electrical and Electronics Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
    These authors contributed equally to this work.)

  • Tripta Thakur

    (DG, National Power Training Institute (NPTI), Faridabad 121003, India
    These authors contributed equally to this work.)

Abstract

The widespread popularity of renewable and sustainable sources of energy such as solar and wind calls for the integration of renewable energy sources into electrical power grids for sustainable development. Microgrids minimize power quality issues in the main grid by linking with an active filter and furnishing reactive power compensation, harmonic mitigation, and load balancing at the point of common coupling. The reliability issues faced by standalone DC microgrids can be managed by interlinking microgrids with a power grid. An artificial intelligence-based Icos ϕ control algorithm for power sharing and power quality improvement in smart microgrid systems is proposed here to render grid-integrated power systems more intelligent. The proposed controller considers various uncertainties caused by load variations, state of charge of the battery of microgrids, and power tariff based on the availability of power in microgrids. This paper presents a detailed analysis of the integration of wind and solar microgrids with the grid for dynamic power flow management in order to improve the power quality and to reduce the burden, thereby strengthening the central grid. A smart grid system with multiple smart microgrids coupled with a renewable energy source with tariff control and judicious power flow management was simulated for power-sharing and power quality improvement. A hardware prototype of the artificial intelligence-based Icos ϕ control algorithm with nonlinear load was also implemented successfully. Furthermore, the economic viability was investigated to ensure the feasibility of the smart microgrid system with the proposed controller design for power flow management and power quality improvement.

Suggested Citation

  • Divya R. Nair & Manjula G. Nair & Tripta Thakur, 2022. "A Smart Microgrid System with Artificial Intelligence for Power-Sharing and Power Quality Improvement," Energies, MDPI, vol. 15(15), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5409-:d:872615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalil Jouili & Mabrouk Jouili & Alsharef Mohammad & Abdulrahman J. Babqi & Walid Belhadj, 2024. "Neural Network Energy Management-Based Nonlinear Control of a DC Micro-Grid with Integrating Renewable Energies," Energies, MDPI, vol. 17(13), pages 1-23, July.
    2. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    3. Omar A. Beg & Asad Ali Khan & Waqas Ur Rehman & Ali Hassan, 2023. "A Review of AI-Based Cyber-Attack Detection and Mitigation in Microgrids," Energies, MDPI, vol. 16(22), pages 1-23, November.
    4. Paul Arévalo & Francisco Jurado, 2024. "Impact of Artificial Intelligence on the Planning and Operation of Distributed Energy Systems in Smart Grids," Energies, MDPI, vol. 17(17), pages 1-22, September.
    5. Yang, Shengyao & Zhu, Meng Nan & Yu, Haiyan, 2024. "Are artificial intelligence and blockchain the key to unlocking the box of clean energy?," Energy Economics, Elsevier, vol. 134(C).
    6. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    7. Ping Chen & Jiawei Gao & Zheng Ji & Han Liang & Yu Peng, 2022. "Do Artificial Intelligence Applications Affect Carbon Emission Performance?—Evidence from Panel Data Analysis of Chinese Cities," Energies, MDPI, vol. 15(15), pages 1-16, August.
    8. Yousef Asadi & Mohsen Eskandari & Milad Mansouri & Andrey V. Savkin & Erum Pathan, 2022. "Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    9. Anna Ostrowska & Łukasz Michalec & Marek Skarupski & Michał Jasiński & Tomasz Sikorski & Paweł Kostyła & Robert Lis & Grzegorz Mudrak & Tomasz Rodziewicz, 2022. "Power Quality Assessment in a Real Microgrid-Statistical Assessment of Different Long-Term Working Conditions," Energies, MDPI, vol. 15(21), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Dias & Paulo Alexandre & Nuno Teixeira & Mariana Chambino, 2023. "Clean Energy Stocks: Resilient Safe Havens in the Volatility of Dirty Cryptocurrencies," Energies, MDPI, vol. 16(13), pages 1-24, July.
    2. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
    3. Mustafa Ergin Şahin & Frede Blaabjerg & Ariya Sangwongwanich, 2022. "A Comprehensive Review on Supercapacitor Applications and Developments," Energies, MDPI, vol. 15(3), pages 1-26, January.
    4. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "The Potential and Development of the Geothermal Energy Market in Poland and the Baltic States—Selected Aspects," Energies, MDPI, vol. 15(11), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5409-:d:872615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.