IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v195y2017icp204-221.html
   My bibliography  Save this article

Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations

Author

Listed:
  • Bustos, Cristian
  • Watts, David

Abstract

Around the world, 1.1billion people are severely affected by their lack of access to electricity. Other vulnerable communities receive low quality access, or face expensive prices that force them to restrict their consumption because of suboptimal technology choices made by their suppliers, which are sometimes forced by local regulation. Microgrids, properly sized and managed, may represent the best option to overcome these dilemmas, offering a tailor made supply. Today’s standard methodologies to design isolated microgrids optimize the cost of supply as well as the cost of the energy not served with an exogenous per unit value for the lost load. They do not include community’s restrictions, such as willingness-to-pay, consumption level, budget constraints or its particular (endogenous) value of lost load. We developed a novel methodology that offers a range of microgrid designs to an isolated community, where each of them is optimal for a particular consumption pattern and value of lost load, from which the community may choose the one that best suits their needs. For this purpose, a Pareto optimal cost-coverage trade-off was constructed for an isolated community in northern Chile. A three-stage optimization was done: capacity (Genetic Algorithm), operation (robust optimization and mixed integer linear programming) and configuration (DC or AC). Diesel, gas, PV, wind and storages were modeled and 176 designs were found in total. More expensive microgrids (and with a larger electricity coverage) have hybrid mixes (conventional and renewable) and have an almost linear total cost from 298 to 249USD/MWh for ENS from 0% to 28%. Lower quality microgrids are fully renewable, providing a very cheap but unreliable supply. The direct impact of lower-cost/limited supply microgrids offered here is the improvement of the quality of life of millions of vulnerable people, but it requires adjustments in the country’s public policies of electrification programs.

Suggested Citation

  • Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
  • Handle: RePEc:eee:appene:v:195:y:2017:i:c:p:204-221
    DOI: 10.1016/j.apenergy.2017.02.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917301447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.02.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. Claudio A Agostini & Shahriyar Nasirov & Carlos Silva, 2014. "Solar PV Planning Toward Sustainable Development in Chile: Challenges and Recommendations," Working Papers wp_038, Adolfo Ibáñez University, School of Government.
    3. Patrao, Iván & Figueres, Emilio & Garcerá, Gabriel & González-Medina, Raúl, 2015. "Microgrid architectures for low voltage distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 415-424.
    4. Deichmann, Uwe & Meisner, Craig & Murray, Siobhan & Wheeler, David, 2011. "The economics of renewable energy expansion in rural Sub-Saharan Africa," Energy Policy, Elsevier, vol. 39(1), pages 215-227, January.
    5. Sachs, Julia & Sawodny, Oliver, 2016. "Multi-objective three stage design optimization for island microgrids," Applied Energy, Elsevier, vol. 165(C), pages 789-800.
    6. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    7. Matteson, Schuyler & Williams, Eric, 2015. "Residual learning rates in lead-acid batteries: Effects on emerging technologies," Energy Policy, Elsevier, vol. 85(C), pages 71-79.
    8. Bhandari, Ramchandra & Stadler, Ingo, 2011. "Electrification using solar photovoltaic systems in Nepal," Applied Energy, Elsevier, vol. 88(2), pages 458-465, February.
    9. Watts, David & Valdés, Marcelo F. & Jara, Danilo & Watson, Andrea, 2015. "Potential residential PV development in Chile: The effect of Net Metering and Net Billing schemes for grid-connected PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1037-1051.
    10. Yadoo, Annabel & Cruickshank, Heather, 2010. "The value of cooperatives in rural electrification," Energy Policy, Elsevier, vol. 38(6), pages 2941-2947, June.
    11. Notton, G. & Lazarov, V. & Stoyanov, L., 2010. "Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations," Renewable Energy, Elsevier, vol. 35(2), pages 541-554.
    12. Montuori, Lina & Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Domijan, Alex, 2014. "Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator," Applied Energy, Elsevier, vol. 132(C), pages 15-22.
    13. Planas, Estefanía & Andreu, Jon & Gárate, José Ignacio & Martínez de Alegría, Iñigo & Ibarra, Edorta, 2015. "AC and DC technology in microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 726-749.
    14. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2016. "The potential role of solid biomass for rural electrification: A techno economic analysis for a hybrid microgrid in India," Applied Energy, Elsevier, vol. 169(C), pages 370-383.
    15. Karabiber, Abdulkerim & Keles, Cemal & Kaygusuz, Asim & Alagoz, B. Baykant, 2013. "An approach for the integration of renewable distributed generation in hybrid DC/AC microgrids," Renewable Energy, Elsevier, vol. 52(C), pages 251-259.
    16. Watts, David & Albornoz, Constanza & Watson, Andrea, 2015. "Clean Development Mechanism (CDM) after the first commitment period: Assessment of the world׳s portfolio and the role of Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1176-1189.
    17. Lee, Mitchell & Soto, Daniel & Modi, Vijay, 2014. "Cost versus reliability sizing strategy for isolated photovoltaic micro-grids in the developing world," Renewable Energy, Elsevier, vol. 69(C), pages 16-24.
    18. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    19. Abbes, Dhaker & Martinez, André & Champenois, Gérard, 2014. "Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 46-62.
    20. Kavvadias, K.C. & Maroulis, Z.B., 2010. "Multi-objective optimization of a trigeneration plant," Energy Policy, Elsevier, vol. 38(2), pages 945-954, February.
    21. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Optimal design of an autonomous solar–wind-pumped storage power supply system," Applied Energy, Elsevier, vol. 160(C), pages 728-736.
    22. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems," Applied Energy, Elsevier, vol. 107(C), pages 412-425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    2. Liangce He & Zhigang Lu & Lili Pan & Hao Zhao & Xueping Li & Jiangfeng Zhang, 2019. "Optimal Economic and Emission Dispatch of a Microgrid with a Combined Heat and Power System," Energies, MDPI, vol. 12(4), pages 1-19, February.
    3. Castillo-Calzadilla, T. & Cuesta, M.A. & Olivares-Rodriguez, C. & Macarulla, A.M. & Legarda, J. & Borges, C.E., 2022. "Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Felipe Valencia, 2021. "Modeling of Small Productive Processes for the Operation of a Microgrid," Energies, MDPI, vol. 14(14), pages 1-19, July.
    5. Bustos, Cristian & Watts, David & Olivares, Daniel, 2019. "The evolution over time of Distributed Energy Resource’s penetration: A robust framework to assess the future impact of prosumage under different tariff designs," Applied Energy, Elsevier, vol. 256(C).
    6. Kate Anderson & Nicholas D. Laws & Spencer Marr & Lars Lisell & Tony Jimenez & Tria Case & Xiangkun Li & Dag Lohmann & Dylan Cutler, 2018. "Quantifying and Monetizing Renewable Energy Resiliency," Sustainability, MDPI, vol. 10(4), pages 1-13, March.
    7. Swaminathan, Siddharth & Pavlak, Gregory S. & Freihaut, James, 2020. "Sizing and dispatch of an islanded microgrid with energy flexible buildings," Applied Energy, Elsevier, vol. 276(C).
    8. Shakya, Bhupendra & Bruce, Anna & MacGill, Iain, 2019. "Survey based characterisation of energy services for improved design and operation of standalone microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 493-503.
    9. Vossos, Vagelis & Gerber, Daniel & Bennani, Youness & Brown, Richard & Marnay, Chris, 2018. "Techno-economic analysis of DC power distribution in commercial buildings," Applied Energy, Elsevier, vol. 230(C), pages 663-678.
    10. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
    11. Fei Wang & Lidong Zhou & Hui Ren & Xiaoli Liu, 2017. "Search Improvement Process-Chaotic Optimization-Particle Swarm Optimization-Elite Retention Strategy and Improved Combined Cooling-Heating-Power Strategy Based Two-Time Scale Multi-Objective Optimizat," Energies, MDPI, vol. 10(12), pages 1-23, November.
    12. Milis, Kevin & Peremans, Herbert & Van Passel, Steven, 2018. "The impact of policy on microgrid economics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3111-3119.
    13. Lu, Tianguang & Ai, Qian & Wang, Zhaoyu, 2018. "Interactive game vector: A stochastic operation-based pricing mechanism for smart energy systems with coupled-microgrids," Applied Energy, Elsevier, vol. 212(C), pages 1462-1475.
    14. Hirwa, Jusse & Zolan, Alexander & Becker, William & Flamand, Tülay & Newman, Alexandra, 2023. "Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital," Applied Energy, Elsevier, vol. 348(C).
    15. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Serrano-Bosquet, Francisco Javier & Carreño Correa, Lina María & Giorgi, Emanuele, 2023. "Review: technological resources for vulnerable communities," Technology in Society, Elsevier, vol. 75(C).
    17. Roozbeh Ghasemi & Martin Wosnik & Diane L. Foster & Weiwei Mo, 2023. "Multi-Objective Decision-Making for an Island Microgrid in the Gulf of Maine," Sustainability, MDPI, vol. 15(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    2. Barelli, L. & Bidini, G. & Pelosi, D. & Ciupageanu, D.A. & Cardelli, E. & Castellini, S. & Lăzăroiu, G., 2020. "Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids," Energy, Elsevier, vol. 204(C).
    3. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    4. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    5. Bustos, Cristian & Watts, David & Olivares, Daniel, 2019. "The evolution over time of Distributed Energy Resource’s penetration: A robust framework to assess the future impact of prosumage under different tariff designs," Applied Energy, Elsevier, vol. 256(C).
    6. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    7. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    8. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    9. Dougier, Nathanael & Garambois, Pierre & Gomand, Julien & Roucoules, Lionel, 2021. "Multi-objective non-weighted optimization to explore new efficient design of electrical microgrids," Applied Energy, Elsevier, vol. 304(C).
    10. Hoffmann, Martha M. & Ansari, Dawud, 2019. "Simulating the potential of swarm grids for pre-electrified communities – A case study from Yemen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 108, pages 289-302.
    11. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    12. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid," Applied Energy, Elsevier, vol. 190(C), pages 232-248.
    13. Arnau González & Jordi-Roger Riba & Antoni Rius, 2015. "Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System," Sustainability, MDPI, vol. 7(9), pages 1-20, September.
    14. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
    15. Gonzalez, Arnau & Riba, Jordi-Roger & Esteban, Bernat & Rius, Antoni, 2018. "Environmental and cost optimal design of a biomass–Wind–PV electricity generation system," Renewable Energy, Elsevier, vol. 126(C), pages 420-430.
    16. González, Arnau & Riba, Jordi-Roger & Rius, Antoni, 2016. "Combined heat and power design based on environmental and cost criteria," Energy, Elsevier, vol. 116(P1), pages 922-932.
    17. Mirsaeidi, Sohrab & Dong, Xinzhou & Said, Dalila Mat, 2018. "Towards hybrid AC/DC microgrids: Critical analysis and classification of protection strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 97-103.
    18. Perera, A.T.D. & Zhao, Bingyu & Wang, Zhe & Soga, Kenichi & Hong, Tianzhen, 2023. "Optimal design of microgrids to improve wildfire resilience for vulnerable communities at the wildland-urban interface," Applied Energy, Elsevier, vol. 335(C).
    19. Hao Pan & Ming Ding & Anwei Chen & Rui Bi & Lei Sun & Shengliang Shi, 2018. "Research on Distributed Power Capacity and Site Optimization Planning of AC/DC Hybrid Micrograms Considering Line Factors," Energies, MDPI, vol. 11(8), pages 1-18, July.
    20. Md Mainul Islam & Mahmood Nagrial & Jamal Rizk & Ali Hellany, 2021. "General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review," Sustainability, MDPI, vol. 13(16), pages 1-45, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:195:y:2017:i:c:p:204-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.