IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3499-d573985.html
   My bibliography  Save this article

Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System

Author

Listed:
  • Cristian Napole

    (System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain)

  • Oscar Barambones

    (System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain)

  • Mohamed Derbeli

    (System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain)

  • José Antonio Cortajarena

    (System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain)

  • Isidro Calvo

    (System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain)

  • Patxi Alkorta

    (System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain)

  • Pablo Fernandez Bustamante

    (System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain)

Abstract

Oscillating water column (OWC) systems are water power generation plants that transform wave kinetic energy into electrical energy by a surrounded air column in a chamber that changes its pressure through the waves motion. The chamber pressure output spins a Wells turbine that is linked to a doubly fed induction generator (DFIG), flexible devices that adjust the turbine speed to increase the efficiency. However, there are different nonlinearities associated with these systems such as weather conditions, uncertainties, and turbine stalling phenomenon. In this research, a fuzzy logic controller (FLC) combined with an airflow reference generator (ARG) was designed and validated in a simulation environment to display the efficiency enhancement of an OWC system by the regulation of the turbine speed. Results show that the proposed framework not only increased the system output power, but the stalling is also avoided under different pressure profiles.

Suggested Citation

  • Cristian Napole & Oscar Barambones & Mohamed Derbeli & José Antonio Cortajarena & Isidro Calvo & Patxi Alkorta & Pablo Fernandez Bustamante, 2021. "Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System," Energies, MDPI, vol. 14(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3499-:d:573985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wanan Sheng & Hui Li, 2017. "A Method for Energy and Resource Assessment of Waves in Finite Water Depths," Energies, MDPI, vol. 10(4), pages 1-17, April.
    2. Sergio Fragoso & Juan Garrido & Francisco Vázquez & Fernando Morilla, 2017. "Comparative Analysis of Decoupling Control Methodologies and H ∞ Multivariable Robust Control for Variable-Speed, Variable-Pitch Wind Turbines: Application to a Lab-Scale Wind Turbine," Sustainability, MDPI, vol. 9(5), pages 1-21, April.
    3. Arthur Medeiros & Thales Ramos & José Tavares de Oliveira & Manoel F. Medeiros Júnior, 2020. "Direct Voltage Control of a Doubly Fed Induction Generator by Means of Optimal Strategy," Energies, MDPI, vol. 13(3), pages 1-28, February.
    4. Azimbek Khudoyberdiev & Shabir Ahmad & Israr Ullah & DoHyeun Kim, 2020. "An Optimization Scheme Based on Fuzzy Logic Control for Efficient Energy Consumption in Hydroponics Environment," Energies, MDPI, vol. 13(2), pages 1-27, January.
    5. Kai-Hung Lu & Chih-Ming Hong & Zhigang Han & Lei Yu, 2020. "New Intelligent Control Strategy Hybrid Grey–RCMAC Algorithm for Ocean Wave Power Generation Systems," Energies, MDPI, vol. 13(1), pages 1-21, January.
    6. Ting-Hsuan Chien & Yu-Chuan Huang & Yuan-Yih Hsu, 2020. "Neural Network-Based Supplementary Frequency Controller for a DFIG Wind Farm," Energies, MDPI, vol. 13(20), pages 1-15, October.
    7. Yalin Liang & Yuyao He & Yun Niu, 2020. "Microgrid Frequency Fluctuation Attenuation Using Improved Fuzzy Adaptive Damping-Based VSG Considering Dynamics and Allowable Deviation," Energies, MDPI, vol. 13(18), pages 1-23, September.
    8. Linyun Xiong & Penghan Li & Hao Li & Jie Wang, 2017. "Sliding Mode Control of DFIG Wind Turbines with a Fast Exponential Reaching Law," Energies, MDPI, vol. 10(11), pages 1-19, November.
    9. Pavel, Claudiu C. & Lacal-Arántegui, Roberto & Marmier, Alain & Schüler, Doris & Tzimas, Evangelos & Buchert, Matthias & Jenseit, Wolfgang & Blagoeva, Darina, 2017. "Substitution strategies for reducing the use of rare earths in wind turbines," Resources Policy, Elsevier, vol. 52(C), pages 349-357.
    10. Jenny Cifuentes & Geovanny Marulanda & Antonio Bello & Javier Reneses, 2020. "Air Temperature Forecasting Using Machine Learning Techniques: A Review," Energies, MDPI, vol. 13(16), pages 1-28, August.
    11. Luis. A. G. Gomez & Ahda P. Grilo & M. B. C. Salles & A. J. Sguarezi Filho, 2020. "Combined Control of DFIG-Based Wind Turbine and Battery Energy Storage System for Frequency Response in Microgrids," Energies, MDPI, vol. 13(4), pages 1-17, February.
    12. Oscar Barambones & Jose M. Gonzalez de Durana & Isidro Calvo, 2018. "Adaptive Sliding Mode Control for a Double Fed Induction Generator Used in an Oscillating Water Column System," Energies, MDPI, vol. 11(11), pages 1-27, October.
    13. Wanan Sheng & Hui Li & Jimmy Murphy, 2017. "An Improved Method for Energy and Resource Assessment of Waves in Finite Water Depths," Energies, MDPI, vol. 10(8), pages 1-17, August.
    14. Lisa Gerlach & Thilo Bocklisch, 2021. "Experts versus Algorithms? Optimized Fuzzy Logic Energy Management of Autonomous PV Hybrid Systems with Battery and H 2 Storage," Energies, MDPI, vol. 14(6), pages 1-28, March.
    15. Chang Wan & Can Yang & Qinghe Fang & Zaijin You & Jing Geng & Yongxue Wang, 2020. "Hydrodynamic Investigation of a Dual-Cylindrical OWC Wave Energy Converter Integrated into a Fixed Caisson Breakwater," Energies, MDPI, vol. 13(4), pages 1-16, February.
    16. Zaijun Wu & Chanxia Zhu & Minqiang Hu, 2013. "Improved Control Strategy for DFIG Wind Turbines for Low Voltage Ride Through," Energies, MDPI, vol. 6(3), pages 1-17, February.
    17. Kostas Belibassakis & Markos Bonovas & Eugen Rusu, 2018. "A Novel Method for Estimating Wave Energy Converter Performance in Variable Bathymetry Regions and Applications," Energies, MDPI, vol. 11(8), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habib Benbouhenni & Nicu Bizon, 2021. "Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System," Mathematics, MDPI, vol. 9(19), pages 1-36, September.
    2. Sunil Kumar Mishra & Amitkumar V. Jha & Bhargav Appasani & Nicu Bizon & Phatiphat Thounthong & Pongsiri Mungporn, 2023. "Ocean Wave Energy Control Using Aquila Optimization Technique," Energies, MDPI, vol. 16(11), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santo, H. & Taylor, P.H. & Stansby, P.K., 2020. "The performance of the three-float M4 wave energy converter off Albany, on the south coast of western Australia, compared to Orkney (EMEC) in the U.K," Renewable Energy, Elsevier, vol. 146(C), pages 444-459.
    2. Choupin, O. & Têtu, A. & Del Río-Gamero, B. & Ferri, F. & Kofoed, JP., 2022. "Premises for an annual energy production and capacity factor improvement towards a few optimised wave energy converters configurations and resources pairs," Applied Energy, Elsevier, vol. 312(C).
    3. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.
    4. Choupin, Ophelie & Del Río-Gamero, B. & Schallenberg-Rodríguez, Julieta & Yánez-Rosales, Pablo, 2022. "Integration of assessment-methods for wave renewable energy: Resource and installation feasibility," Renewable Energy, Elsevier, vol. 185(C), pages 455-482.
    5. Shi, Xueli & Liang, Bingchen & Du, Shengtao & Shao, Zhuxiao & Li, Shaowu, 2022. "Wave energy assessment in the China East Adjacent Seas based on a 25-year wave-current interaction numerical simulation," Renewable Energy, Elsevier, vol. 199(C), pages 1381-1407.
    6. Raúl Cascajo & Rafael Molina & Luís Pérez-Rojas, 2022. "Sectoral Analysis of the Fundamental Criteria for the Evaluation of the Viability of Wave Energy Generation Facilities in Ports—Application of the Delphi Methodology," Energies, MDPI, vol. 15(7), pages 1-25, April.
    7. Eugen Rusu & Vengatesan Venugopal, 2019. "Special Issue “Offshore Renewable Energy: Ocean Waves, Tides and Offshore Wind”," Energies, MDPI, vol. 12(1), pages 1-4, January.
    8. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    9. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Luigi Fortuna & Arturo Buscarino, 2022. "Sustainable Energy Systems," Energies, MDPI, vol. 15(23), pages 1-7, December.
    11. Ander Chouza & Oscar Barambones & Isidro Calvo & Javier Velasco, 2019. "Sliding Mode-Based Robust Control for Piezoelectric Actuators with Inverse Dynamics Estimation," Energies, MDPI, vol. 12(5), pages 1-19, March.
    12. José Miguel Rodrigues, 2021. "A Procedure to Calculate First-Order Wave-Structure Interaction Loads in Wave Farms and Other Multi-Body Structures Subjected to Inhomogeneous Waves," Energies, MDPI, vol. 14(6), pages 1-21, March.
    13. O’Connell, Ross & de Montera, Louis & Peters, Jared L. & Horion, Stéphanie, 2020. "An updated assessment of Ireland’s wave energy resource using satellite data assimilation and a revised wave period ratio," Renewable Energy, Elsevier, vol. 160(C), pages 1431-1444.
    14. Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
    15. Amarouche, Khalid & Akpınar, Adem & Bachari, Nour El Islam & Houma, Fouzia, 2020. "Wave energy resource assessment along the Algerian coast based on 39-year wave hindcast," Renewable Energy, Elsevier, vol. 153(C), pages 840-860.
    16. Tilman Santarius & Johanna Pohl & Steffen Lange, 2020. "Digitalization and the Decoupling Debate: Can ICT Help to Reduce Environmental Impacts While the Economy Keeps Growing?," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    17. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    18. Md Shafiul Alam & Fahad Saleh Al-Ismail & Mohammad Ali Abido, 2021. "PV/Wind-Integrated Low-Inertia System Frequency Control: PSO-Optimized Fractional-Order PI-Based SMES Approach," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    19. Hussain, Shahid & Irshad, Reyazur Rashid & Pallonetto, Fabiano & Hussain, Ihtisham & Hussain, Zakir & Tahir, Muhammad & Abimannan, Satheesh & Shukla, Saurabh & Yousif, Adil & Kim, Yun-Su & El-Sayed, H, 2023. "Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles," Applied Energy, Elsevier, vol. 352(C).
    20. Wanan Sheng & Hui Li & Jimmy Murphy, 2017. "An Improved Method for Energy and Resource Assessment of Waves in Finite Water Depths," Energies, MDPI, vol. 10(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3499-:d:573985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.