IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5005-d858863.html
   My bibliography  Save this article

Deep Learning in High Voltage Engineering: A Literature Review

Author

Listed:
  • Sara Mantach

    (Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada)

  • Abdulla Lutfi

    (Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Hamed Moradi Tavasani

    (Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada)

  • Ahmed Ashraf

    (Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada)

  • Ayman El-Hag

    (Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Behzad Kordi

    (Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada)

Abstract

Condition monitoring of high voltage apparatus is of much importance for the maintenance of electric power systems. Whether it is detecting faults or partial discharges that take place in high voltage equipment, or detecting contamination and degradation of outdoor insulators, deep learning which is a branch of machine learning has been extensively investigated. Instead of using hand-crafted manual features as an input for the traditional machine learning algorithms, deep learning algorithms use raw data as the input where the feature extraction stage is integrated in the learning stage, resulting in a more automated process. This is the main advantage of using deep learning instead of traditional machine learning techniques. This paper presents a review of the recent literature on the application of deep learning techniques in monitoring high voltage apparatus such as GIS, transformers, cables, rotating machines, and outdoor insulators.

Suggested Citation

  • Sara Mantach & Abdulla Lutfi & Hamed Moradi Tavasani & Ahmed Ashraf & Ayman El-Hag & Behzad Kordi, 2022. "Deep Learning in High Voltage Engineering: A Literature Review," Energies, MDPI, vol. 15(14), pages 1-32, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5005-:d:858863
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vo-Nguyen Tuyet-Doan & Tien-Tung Nguyen & Minh-Tuan Nguyen & Jong-Ho Lee & Yong-Hwa Kim, 2020. "Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 13(8), pages 1-16, April.
    2. Yanxin Wang & Jing Yan & Zhou Yang & Tingliang Liu & Yiming Zhao & Junyi Li, 2019. "Partial Discharge Pattern Recognition of Gas-Insulated Switchgear via a Light-Scale Convolutional Neural Network," Energies, MDPI, vol. 12(24), pages 1-19, December.
    3. Zhe Li & Yongpeng Xu & Xiuchen Jiang, 2020. "Pattern Recognition of DC Partial Discharge on XLPE Cable Based on ADAM-DBN," Energies, MDPI, vol. 13(17), pages 1-12, September.
    4. Yichen Zhou & Xiaohui Yang & Lingyu Tao & Li Yang, 2021. "Transformer Fault Diagnosis Model Based on Improved Gray Wolf Optimizer and Probabilistic Neural Network," Energies, MDPI, vol. 14(11), pages 1-21, May.
    5. Yuanlin Luo & Zhaohui Li & Hong Wang, 2017. "A Review of Online Partial Discharge Measurement of Large Generators," Energies, MDPI, vol. 10(11), pages 1-32, October.
    6. Marek Florkowski, 2020. "Classification of Partial Discharge Images Using Deep Convolutional Neural Networks," Energies, MDPI, vol. 13(20), pages 1-17, October.
    7. ZhenHua Li & Yujie Zhang & Ahmed Abu-Siada & Xingxin Chen & Zhenxing Li & Yanchun Xu & Lei Zhang & Yue Tong, 2021. "Fault Diagnosis of Transformer Windings Based on Decision Tree and Fully Connected Neural Network," Energies, MDPI, vol. 14(6), pages 1-14, March.
    8. Minh-Tuan Nguyen & Viet-Hung Nguyen & Suk-Jun Yun & Yong-Hwa Kim, 2018. "Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 11(5), pages 1-13, May.
    9. Benjamin Adam & Stefan Tenbohlen, 2021. "Classification of Superimposed Partial Discharge Patterns," Energies, MDPI, vol. 14(8), pages 1-10, April.
    10. Xiu Zhou & Xutao Wu & Pei Ding & Xiuguang Li & Ninghui He & Guozhi Zhang & Xiaoxing Zhang, 2019. "Research on Transformer Partial Discharge UHF Pattern Recognition Based on Cnn-lstm," Energies, MDPI, vol. 13(1), pages 1-13, December.
    11. Ning Liu & Bo Fan & Xianyong Xiao & Xiaomei Yang, 2019. "Cable Incipient Fault Identification with a Sparse Autoencoder and a Deep Belief Network," Energies, MDPI, vol. 12(18), pages 1-15, September.
    12. Jiejie Dai & Yingbing Teng & Zhaoqi Zhang & Zhongmin Yu & Gehao Sheng & Xiuchen Jiang, 2019. "Partial Discharge Data Matching Method for GIS Case-Based Reasoning," Energies, MDPI, vol. 12(19), pages 1-15, September.
    13. Sara Mantach & Ahmed Ashraf & Hamed Janani & Behzad Kordi, 2021. "A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set," Energies, MDPI, vol. 14(5), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana-Maria Moldovan & Mircea Ion Buzdugan, 2023. "Prediction of Faults Location and Type in Electrical Cables Using Artificial Neural Network," Sustainability, MDPI, vol. 15(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinseok Kim & Ki-Il Kim, 2021. "Partial Discharge Online Detection for Long-Term Operational Sustainability of On-Site Low Voltage Distribution Network Using CNN Transfer Learning," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    2. Sara Mantach & Ahmed Ashraf & Hamed Janani & Behzad Kordi, 2021. "A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set," Energies, MDPI, vol. 14(5), pages 1-16, March.
    3. Yaseen Ahmed Mohammed Alsumaidaee & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Chai Phing Chen & Kharudin Ali, 2022. "Review of Medium-Voltage Switchgear Fault Detection in a Condition-Based Monitoring System by Using Deep Learning," Energies, MDPI, vol. 15(18), pages 1-34, September.
    4. Sanuri Ishak & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Chai Phing Chen & Talal Yusaf, 2021. "Fault Classification System for Switchgear CBM from an Ultrasound Analysis Technique Using Extreme Learning Machine," Energies, MDPI, vol. 14(19), pages 1-21, October.
    5. Marek Florkowski, 2021. "Anomaly Detection, Trend Evolution, and Feature Extraction in Partial Discharge Patterns," Energies, MDPI, vol. 14(13), pages 1-18, June.
    6. Jianfeng Zheng & Zhichao Chen & Qun Wang & Hao Qiang & Weiyue Xu, 2022. "GIS Partial Discharge Pattern Recognition Based on Time-Frequency Features and Improved Convolutional Neural Network," Energies, MDPI, vol. 15(19), pages 1-14, October.
    7. Marek Florkowski, 2020. "Classification of Partial Discharge Images Using Deep Convolutional Neural Networks," Energies, MDPI, vol. 13(20), pages 1-17, October.
    8. Krzysztof Walczak, 2023. "Localization of HV Insulation Defects Using a System of Associated Capacitive Sensors," Energies, MDPI, vol. 16(5), pages 1-15, February.
    9. Gustavo de Oliveira Machado & Luciano Coutinho Gomes & Augusto Wohlgemuth Fleury Veloso da Silveira & Carlos Eduardo Tavares & Darizon Alves de Andrade, 2022. "Impacts of Harmonic Voltage Distortions on the Dynamic Behavior and the PRPD Patterns of Partial Discharges in an Air Cavity Inside a Solid Dielectric Material," Energies, MDPI, vol. 15(7), pages 1-20, April.
    10. Xiaoxia Liang & Ming Zhang & Guojin Feng & Duo Wang & Yuchun Xu & Fengshou Gu, 2023. "Few-Shot Learning Approaches for Fault Diagnosis Using Vibration Data: A Comprehensive Review," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
    11. Jiil Kim & Cheong Hee Park, 2020. "Partial Discharge Detection Based on Anomaly Pattern Detection," Energies, MDPI, vol. 13(20), pages 1-11, October.
    12. Jiaying Deng & Wenhai Zhang & Xiaomei Yang, 2019. "Recognition and Classification of Incipient Cable Failures Based on Variational Mode Decomposition and a Convolutional Neural Network," Energies, MDPI, vol. 12(10), pages 1-16, May.
    13. Vo-Nguyen Tuyet-Doan & Tien-Tung Nguyen & Minh-Tuan Nguyen & Jong-Ho Lee & Yong-Hwa Kim, 2020. "Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 13(8), pages 1-16, April.
    14. Ghulam Amjad Hussain & Ashraf A. Zaher & Detlef Hummes & Madia Safdar & Matti Lehtonen, 2020. "Hybrid Sensing of Internal and Surface Partial Discharges in Air-Insulated Medium Voltage Switchgear," Energies, MDPI, vol. 13(7), pages 1-16, April.
    15. Alexandru Pîrjan & George Căruțașu & Dana-Mihaela Petroșanu, 2018. "Designing, Developing, and Implementing a Forecasting Method for the Produced and Consumed Electricity in the Case of Small Wind Farms Situated on Quite Complex Hilly Terrain," Energies, MDPI, vol. 11(10), pages 1-42, October.
    16. Ondřej Kozák & Josef Pihera, 2021. "Partial Discharge Analysis and Simulation Using the Consecutive Pulses Correlation Method," Energies, MDPI, vol. 14(9), pages 1-15, April.
    17. Zhannan Guo & Yinlin Hao & Hanwen Shi & Zhenyu Wu & Yuhu Wu & Ximing Sun, 2023. "A Fault Diagnosis Algorithm for the Dedicated Equipment Based on the CNN-LSTM Mechanism," Energies, MDPI, vol. 16(13), pages 1-16, July.
    18. Fang Dao & Yun Zeng & Yidong Zou & Xiang Li & Jing Qian, 2021. "Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review," Energies, MDPI, vol. 14(23), pages 1-16, November.
    19. Yichen Zhou & Xiaohui Yang & Lingyu Tao & Li Yang, 2023. "Correction: Zhou et al. Transformer Fault Diagnosis Model Based on Improved Gray Wolf Optimizer and Probabilistic Neural Network. Energies 2021, 14 , 3029," Energies, MDPI, vol. 16(7), pages 1-3, April.
    20. Muhammad Shafiq & Ivar Kiitam & Kimmo Kauhaniemi & Paul Taklaja & Lauri Kütt & Ivo Palu, 2020. "Performance Comparison of PD Data Acquisition Techniques for Condition Monitoring of Medium Voltage Cables," Energies, MDPI, vol. 13(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5005-:d:858863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.