IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6162-d1115030.html
   My bibliography  Save this article

Prediction of Faults Location and Type in Electrical Cables Using Artificial Neural Network

Author

Listed:
  • Ana-Maria Moldovan

    (Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania)

  • Mircea Ion Buzdugan

    (Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania)

Abstract

Detecting and locating faults in electrical cables has been a permanent concern regarding electrical power distribution systems. Over time, several techniques have been developed aiming to manage these faulty situations in an efficient way. These techniques must be fast, accurate, but, above all, efficient. This paper develops a new approach for detecting, locating, classifying, and predicting faults, particularly in different types of short-circuits in electrical cables, based on a robust artificial neural network technique. The novelty of this approach lies in the ability of the method to predict fault’s location and type. The proposed method uses the Matlab and Simulink platform and comprises four consecutive stages. The first one is devoted to the development of the Simulink model. The second one implies a large number of simulations in order to generate the necessary dataset for training and testing the artificial neural network model (ANN). The following stage uses the ANN to classify the location and the type of potential faults. Finally, the fourth stage consists of predicting the location and the type of future faults. In order to reduce the time and the resources of the simulation process, a virtual machine is used. The study reveals the efficiency of the method, and its ability to successfully predict faults in real-world electrical power systems.

Suggested Citation

  • Ana-Maria Moldovan & Mircea Ion Buzdugan, 2023. "Prediction of Faults Location and Type in Electrical Cables Using Artificial Neural Network," Sustainability, MDPI, vol. 15(7), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6162-:d:1115030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amal Hichri & Mansour Hajji & Majdi Mansouri & Kamaleldin Abodayeh & Kais Bouzrara & Hazem Nounou & Mohamed Nounou, 2022. "Genetic-Algorithm-Based Neural Network for Fault Detection and Diagnosis: Application to Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    2. Selma Tchoketch Kebir & Nawal Cheggaga & Adrian Ilinca & Sabri Boulouma, 2021. "An Efficient Neural Network-Based Method for Diagnosing Faults of PV Array," Sustainability, MDPI, vol. 13(11), pages 1-27, May.
    3. Younis M. Nsaif & Molla Shahadat Hossain Lipu & Aini Hussain & Afida Ayob & Yushaizad Yusof & Muhammad Ammirrul A. M. Zainuri, 2022. "A Novel Fault Detection and Classification Strategy for Photovoltaic Distribution Network Using Improved Hilbert–Huang Transform and Ensemble Learning Technique," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    4. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    5. Sara Mantach & Abdulla Lutfi & Hamed Moradi Tavasani & Ahmed Ashraf & Ayman El-Hag & Behzad Kordi, 2022. "Deep Learning in High Voltage Engineering: A Literature Review," Energies, MDPI, vol. 15(14), pages 1-32, July.
    6. Rizwan Tariq & Ibrahim Alhamrouni & Ateeq Ur Rehman & Elsayed Tag Eldin & Muhammad Shafiq & Nivin A. Ghamry & Habib Hamam, 2022. "An Optimized Solution for Fault Detection and Location in Underground Cables Based on Traveling Waves," Energies, MDPI, vol. 15(17), pages 1-19, September.
    7. Lei Wang & Hui Liu & Le Van Dai & Yuwei Liu, 2018. "Novel Method for Identifying Fault Location of Mixed Lines," Energies, MDPI, vol. 11(6), pages 1-19, June.
    8. Shoyab Ali & Annapurna Bhargava & Akash Saxena & Pavan Kumar, 2023. "A Hybrid Marine Predator Sine Cosine Algorithm for Parameter Selection of Hybrid Active Power Filter," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Navid Behmanesh-Fard & Hossein Yazdanjouei & Mohammad Shokouhifar & Frank Werner, 2023. "Mathematical Circuit Root Simplification Using an Ensemble Heuristic–Metaheuristic Algorithm," Mathematics, MDPI, vol. 11(6), pages 1-22, March.
    2. Dan Ling & Chaosong Li & Yan Wang & Pengye Zhang, 2022. "Fault Detection and Identification of Furnace Negative Pressure System with CVA and GA-XGBoost," Energies, MDPI, vol. 15(17), pages 1-19, August.
    3. Masih Hosseinzadeh & Hossein Mashhadimoslem & Farid Maleki & Ali Elkamel, 2022. "Prediction of Solid Conversion Process in Direct Reduction Iron Oxide Using Machine Learning," Energies, MDPI, vol. 15(24), pages 1-25, December.
    4. Qin, Meng & Hu, Wei & Qi, Xinzhou & Chang, Tsangyao, 2024. "Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy," Energy Economics, Elsevier, vol. 131(C).
    5. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    6. Ding, Jiaqi & Zhao, Pu & Liu, Changjun & Wang, Xiaofang & Xie, Rong & Liu, Haitao, 2024. "From irregular to continuous: The deep Koopman model for time series forecasting of energy equipment," Applied Energy, Elsevier, vol. 364(C).
    7. Yacouba Telly & Xuezhi Liu & Tadagbe Roger Sylvanus Gbenou, 2023. "Investigating the Growth Effect of Carbon-Intensive Economic Activities on Economic Growth: Evidence from Angola," Energies, MDPI, vol. 16(8), pages 1-18, April.
    8. Mahdi Asadi & Iman Larki & Mohammad Mahdi Forootan & Rouhollah Ahmadi & Meisam Farajollahi, 2023. "Long-Term Scenario Analysis of Electricity Supply and Demand in Iran: Time Series Analysis, Renewable Electricity Development, Energy Efficiency and Conservation," Sustainability, MDPI, vol. 15(5), pages 1-24, March.
    9. Asya İşçen & Kerem Öznacar & K. M. Murat Tunç & M. Erdem Günay, 2023. "Exploring the Critical Factors of Biomass Pyrolysis for Sustainable Fuel Production by Machine Learning," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    10. Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.
    11. Zahra Yahyaoui & Mansour Hajji & Majdi Mansouri & Kais Bouzrara, 2023. "One-Class Machine Learning Classifiers-Based Multivariate Feature Extraction for Grid-Connected PV Systems Monitoring under Irradiance Variations," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    12. Ricardo Granizo Arrabé & Carlos A. Platero & Fernando Álvarez Gómez & Emilio Rebollo López, 2018. "New Differential Protection Method for Multiterminal HVDC Cable Networks," Energies, MDPI, vol. 11(12), pages 1-16, December.
    13. Lihong Pan & Miyuan Shan & Linfeng Li, 2023. "Optimizing Perishable Product Supply Chain Network Using Hybrid Metaheuristic Algorithms," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    14. Shuhao Liu & Kunlun Han & Hongzheng Li & Tengyue Zhang & Fengyuan Chen, 2023. "A Two-Terminal Directional Protection Method for HVDC Transmission Lines of Current Fault Component Based on Improved VMD-Hilbert Transform," Energies, MDPI, vol. 16(19), pages 1-21, October.
    15. Adel Mellit & Omar Herrak & Catalina Rus Casas & Alessandro Massi Pavan, 2021. "A Machine Learning and Internet of Things-Based Online Fault Diagnosis Method for Photovoltaic Arrays," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    16. Pham Vu Hong Son & Luu Ngoc Quynh Khoi, 2024. "Artificial intelligent support model for multiple criteria decision in construction management," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 2218-2241, December.
    17. Ramakanta Jena & Ritesh Dash & Kalvakurthi Jyotheeswara Reddy & Prasanta Kumar Parida & Chittathuru Dhanamjayulu & Sarat Chandra Swain & S. M. Muyeen, 2023. "Enhancing Efficiency of Grid-Connected Solar Photovoltaic System with Particle Swarm Optimization & Long Short-Term Memory Hybrid Technique," Sustainability, MDPI, vol. 15(11), pages 1-24, May.
    18. Li, Na & Cui, Xiaoti & Zhu, Jimin & Zhou, Mengfan & Liso, Vincenzo & Cinti, Giovanni & Sahlin, Simon Lennart & Araya, Samuel Simon, 2023. "A review of reformed methanol-high temperature proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    19. Younis M. Nsaif & Molla Shahadat Hossain Lipu & Aini Hussain & Afida Ayob & Yushaizad Yusof & Muhammad Ammirrul A. M. Zainuri, 2022. "A New Voltage Based Fault Detection Technique for Distribution Network Connected to Photovoltaic Sources Using Variational Mode Decomposition Integrated Ensemble Bagged Trees Approach," Energies, MDPI, vol. 15(20), pages 1-20, October.
    20. Pan, Jeng-Shyang & Zhang, Zhen & Chu, Shu-Chuan & Zhang, Si-Qi & Wu, Jimmy Ming-Tai, 2024. "A parallel compact Marine Predators Algorithm applied in time series prediction of Backpropagation neural network (BNN) and engineering optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 65-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6162-:d:1115030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.