IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7372-d935840.html
   My bibliography  Save this article

GIS Partial Discharge Pattern Recognition Based on Time-Frequency Features and Improved Convolutional Neural Network

Author

Listed:
  • Jianfeng Zheng

    (School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
    Jiangsu Province Engineering Research Center of High-Level Energy and Power Equipment, Changzhou University, Changzhou 213164, China)

  • Zhichao Chen

    (School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China)

  • Qun Wang

    (School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China)

  • Hao Qiang

    (School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
    Jiangsu Province Engineering Research Center of High-Level Energy and Power Equipment, Changzhou University, Changzhou 213164, China)

  • Weiyue Xu

    (School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
    Jiangsu Province Engineering Research Center of High-Level Energy and Power Equipment, Changzhou University, Changzhou 213164, China)

Abstract

Different types of partial discharge (PD) in gas-insulated switchgear (GIS) cause different damage to GIS insulation, correctly identifying the PD type is very important for evaluating the insulation status of GIS. This paper proposes a PD pattern recognition method based on an improved feature fusion convolutional neural network (IFCNN) to fully use the time-frequency features of PD pulses to realize PD pattern recognition. Firstly, the one-dimensional time-domain feature sequence of the PD pulse and the corresponding wavelet time-frequency diagram are applied as inputs. Secondly, the convolutional neural network (CNN) with two parallel channels is used for feature extraction, the extracted fault information is fused, and the shallow features of the wavelet time-frequency diagram are fused to prevent feature loss caused by pooling operation. Finally, the extracted features are sent to the classifier to recognize different types of PD. The discharge data of different types of PD are obtained for testing by experiments and simulation. Compared with 1-D CNN and 2-D CNN under the same specification, the proposed method can mine more potential local features of discharge pulses by fusing the time-frequency features of PD pulses in different dimensions, and improves the recognition accuracy to 95.8%.

Suggested Citation

  • Jianfeng Zheng & Zhichao Chen & Qun Wang & Hao Qiang & Weiyue Xu, 2022. "GIS Partial Discharge Pattern Recognition Based on Time-Frequency Features and Improved Convolutional Neural Network," Energies, MDPI, vol. 15(19), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7372-:d:935840
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7372/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7372/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanxin Wang & Jing Yan & Zhou Yang & Tingliang Liu & Yiming Zhao & Junyi Li, 2019. "Partial Discharge Pattern Recognition of Gas-Insulated Switchgear via a Light-Scale Convolutional Neural Network," Energies, MDPI, vol. 12(24), pages 1-19, December.
    2. Marek Florkowski, 2020. "Classification of Partial Discharge Images Using Deep Convolutional Neural Networks," Energies, MDPI, vol. 13(20), pages 1-17, October.
    3. Simeng Song & Yong Qian & Hui Wang & Yiming Zang & Gehao Sheng & Xiuchen Jiang, 2020. "Partial Discharge Pattern Recognition Based on 3D Graphs of Phase Resolved Pulse Sequence," Energies, MDPI, vol. 13(16), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songyuan Li & Pengxian Song & Zhanpeng Wei & Xu Li & Qinghua Tang & Zhengzheng Meng & Ji Li & Songtao Liu & Yuhuai Wang & Jin Li, 2022. "Partial Discharge Detection and Defect Location Method in GIS Cable Terminal," Energies, MDPI, vol. 16(1), pages 1-10, December.
    2. Aleksandra Płużek & Łukasz Nagi, 2022. "Classification of Partial Discharges Recorded by the Method Using the Phenomenon of Scintillation," Energies, MDPI, vol. 16(1), pages 1-9, December.
    3. Guang Wang & Jiale Xie & Shunli Wang, 2023. "Application of Artificial Intelligence in Power System Monitoring and Fault Diagnosis," Energies, MDPI, vol. 16(14), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinseok Kim & Ki-Il Kim, 2021. "Partial Discharge Online Detection for Long-Term Operational Sustainability of On-Site Low Voltage Distribution Network Using CNN Transfer Learning," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    2. Sara Mantach & Ahmed Ashraf & Hamed Janani & Behzad Kordi, 2021. "A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set," Energies, MDPI, vol. 14(5), pages 1-16, March.
    3. Marek Florkowski, 2021. "Anomaly Detection, Trend Evolution, and Feature Extraction in Partial Discharge Patterns," Energies, MDPI, vol. 14(13), pages 1-18, June.
    4. Sara Mantach & Abdulla Lutfi & Hamed Moradi Tavasani & Ahmed Ashraf & Ayman El-Hag & Behzad Kordi, 2022. "Deep Learning in High Voltage Engineering: A Literature Review," Energies, MDPI, vol. 15(14), pages 1-32, July.
    5. Gustavo de Oliveira Machado & Luciano Coutinho Gomes & Augusto Wohlgemuth Fleury Veloso da Silveira & Carlos Eduardo Tavares & Darizon Alves de Andrade, 2022. "Impacts of Harmonic Voltage Distortions on the Dynamic Behavior and the PRPD Patterns of Partial Discharges in an Air Cavity Inside a Solid Dielectric Material," Energies, MDPI, vol. 15(7), pages 1-20, April.
    6. Sanuri Ishak & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Chai Phing Chen & Talal Yusaf, 2021. "Fault Classification System for Switchgear CBM from an Ultrasound Analysis Technique Using Extreme Learning Machine," Energies, MDPI, vol. 14(19), pages 1-21, October.
    7. Yaseen Ahmed Mohammed Alsumaidaee & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Chai Phing Chen & Kharudin Ali, 2022. "Review of Medium-Voltage Switchgear Fault Detection in a Condition-Based Monitoring System by Using Deep Learning," Energies, MDPI, vol. 15(18), pages 1-34, September.
    8. Ramon C. F. Araújo & Rodrigo M. S. de Oliveira & Fabrício J. B. Barros, 2022. "Automatic PRPD Image Recognition of Multiple Simultaneous Partial Discharge Sources in On-Line Hydro-Generator Stator Bars," Energies, MDPI, vol. 15(1), pages 1-26, January.
    9. Marek Florkowski, 2020. "Classification of Partial Discharge Images Using Deep Convolutional Neural Networks," Energies, MDPI, vol. 13(20), pages 1-17, October.
    10. Marek Florkowski, 2023. "Effect of Interplay between Parallel and Perpendicular Magnetic and Electric Fields on Partial Discharges," Energies, MDPI, vol. 16(13), pages 1-16, June.
    11. Krzysztof Walczak, 2023. "Localization of HV Insulation Defects Using a System of Associated Capacitive Sensors," Energies, MDPI, vol. 16(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7372-:d:935840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.