IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3677-d270867.html
   My bibliography  Save this article

Partial Discharge Data Matching Method for GIS Case-Based Reasoning

Author

Listed:
  • Jiejie Dai

    (State Grid Shanghai Shinan Electric Power Supply Company, Xinbei Road No.268, Shanghai 201199, China)

  • Yingbing Teng

    (State Grid Shanghai Shinan Electric Power Supply Company, Xinbei Road No.268, Shanghai 201199, China)

  • Zhaoqi Zhang

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Dongchuan Road No.800, Shanghai 200240, China)

  • Zhongmin Yu

    (State Grid Shanghai Electric Power Company, Yuanshen Road No.1122, Shanghai 200120, China)

  • Gehao Sheng

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Dongchuan Road No.800, Shanghai 200240, China)

  • Xiuchen Jiang

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Dongchuan Road No.800, Shanghai 200240, China)

Abstract

With the accumulation of partial discharge (PD) detection data from substation, case-based reasoning (CBR), which computes the match degree between detected PD data and historical case data provides new ideas for the interpretation and evaluation of partial discharge data. Aiming at the problem of partial discharge data matching, this paper proposes a data matching method based on a variational autoencoder (VAE). A VAE network model for partial discharge data is constructed to extract the deep eigenvalues. Cosine distance is then used to calculate the match degree between different partial discharge data. To verify the advantages of the proposed method, a partial discharge dataset was established through a partial discharge experiment and live detections on substation site. The proposed method was compared with other feature extraction methods and matching methods including statistical features, deep belief networks (DBN), deep convolutional neural networks (CNN), Euclidean distances, and correlation coefficients. The experimental results show that the cosine distance match degree based on the VAE feature vector can effectively detect similar partial discharge data compared with other data matching methods.

Suggested Citation

  • Jiejie Dai & Yingbing Teng & Zhaoqi Zhang & Zhongmin Yu & Gehao Sheng & Xiuchen Jiang, 2019. "Partial Discharge Data Matching Method for GIS Case-Based Reasoning," Energies, MDPI, vol. 12(19), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3677-:d:270867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3677/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaseen Ahmed Mohammed Alsumaidaee & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Chai Phing Chen & Kharudin Ali, 2022. "Review of Medium-Voltage Switchgear Fault Detection in a Condition-Based Monitoring System by Using Deep Learning," Energies, MDPI, vol. 15(18), pages 1-34, September.
    2. Marek Florkowski, 2020. "Classification of Partial Discharge Images Using Deep Convolutional Neural Networks," Energies, MDPI, vol. 13(20), pages 1-17, October.
    3. Jinseok Kim & Ki-Il Kim, 2021. "Partial Discharge Online Detection for Long-Term Operational Sustainability of On-Site Low Voltage Distribution Network Using CNN Transfer Learning," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    4. Sara Mantach & Abdulla Lutfi & Hamed Moradi Tavasani & Ahmed Ashraf & Ayman El-Hag & Behzad Kordi, 2022. "Deep Learning in High Voltage Engineering: A Literature Review," Energies, MDPI, vol. 15(14), pages 1-32, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3677-:d:270867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.