IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5444-d431029.html
   My bibliography  Save this article

Partial Discharge Detection Based on Anomaly Pattern Detection

Author

Listed:
  • Jiil Kim

    (Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Korea)

  • Cheong Hee Park

    (Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Korea)

Abstract

Recently, a lot of research has been carried out on partial discharge (PD) using machine learning techniques. However, most of these studies have focused on the identification of multiple PD sources, PD classification, or denoising PD measurements, with few studies on real-time PD occurrence detection. In this paper, we propose a method to detect PD occurrence based on anomaly pattern detection. The proposed method consists of three steps. First, in the data preprocessing step, the pulse sequence data are converted into a feature vector stream by applying a sliding window technique. In the next step, normal data modeling is performed using feature vectors transformed from pulse sequence data collected in a normal state where no PD occurs. Finally, for the monitored pulse sequence, an online process for PD detection is carried out through conversion to a feature vector data stream and an anomaly pattern detection method. Experimental results using simulated PD data demonstrate the capabilities of the proposed method.

Suggested Citation

  • Jiil Kim & Cheong Hee Park, 2020. "Partial Discharge Detection Based on Anomaly Pattern Detection," Energies, MDPI, vol. 13(20), pages 1-11, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5444-:d:431029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5444/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5444/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wong Jee Keen Raymond & Hazlee Azil Illias & Ab Halim Abu Bakar, 2017. "Classification of Partial Discharge Measured under Different Levels of Noise Contamination," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-20, January.
    2. Xiu Zhou & Xutao Wu & Pei Ding & Xiuguang Li & Ninghui He & Guozhi Zhang & Xiaoxing Zhang, 2019. "Research on Transformer Partial Discharge UHF Pattern Recognition Based on Cnn-lstm," Energies, MDPI, vol. 13(1), pages 1-13, December.
    3. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    4. Cheong Hee Park & Taegong Kim, 2020. "Energy Theft Detection in Advanced Metering Infrastructure Based on Anomaly Pattern Detection," Energies, MDPI, vol. 13(15), pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    2. Wen Si & Simeng Li & Huaishuo Xiao & Qingquan Li & Yalin Shi & Tongqiao Zhang, 2018. "Defect Pattern Recognition Based on Partial Discharge Characteristics of Oil-Pressboard Insulation for UHVDC Converter Transformer," Energies, MDPI, vol. 11(3), pages 1-19, March.
    3. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2019. "Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation," Energies, MDPI, vol. 12(18), pages 1-19, September.
    4. Sepehr Moalem & Roya M. Ahari & Ghazanfar Shahgholian & Majid Moazzami & Seyed Mohammad Kazemi, 2022. "Long-Term Electricity Demand Forecasting in the Steel Complex Micro-Grid Electricity Supply Chain—A Coupled Approach," Energies, MDPI, vol. 15(21), pages 1-17, October.
    5. Bulent Haznedar & Huseyin Cagan Kilinc & Furkan Ozkan & Adem Yurtsever, 2023. "Streamflow forecasting using a hybrid LSTM-PSO approach: the case of Seyhan Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 681-701, May.
    6. Kanitta Yarak & Apichon Witayangkurn & Kunnaree Kritiyutanont & Chomchanok Arunplod & Ryosuke Shibasaki, 2021. "Oil Palm Tree Detection and Health Classification on High-Resolution Imagery Using Deep Learning," Agriculture, MDPI, vol. 11(2), pages 1-16, February.
    7. Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
    8. Wu, Jingyao & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Learning from Class-imbalanced Data with a Model-Agnostic Framework for Machine Intelligent Diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Gillmann, Niels & Kim, Alisa, 2021. "Quantification of Economic Uncertainty: a deep learning approach," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242421, Verein für Socialpolitik / German Economic Association.
    10. Jinseok Kim & Ki-Il Kim, 2021. "Partial Discharge Online Detection for Long-Term Operational Sustainability of On-Site Low Voltage Distribution Network Using CNN Transfer Learning," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    11. Stanislaw Osowski & Robert Szmurlo & Krzysztof Siwek & Tomasz Ciechulski, 2022. "Neural Approaches to Short-Time Load Forecasting in Power Systems—A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    12. Avraam Tsantekidis & Nikolaos Passalis & Anastasios Tefas & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Using Deep Learning for price prediction by exploiting stationary limit order book features," Papers 1810.09965, arXiv.org.
    13. Shengyi Zhao & Yun Peng & Jizhan Liu & Shuo Wu, 2021. "Tomato Leaf Disease Diagnosis Based on Improved Convolution Neural Network by Attention Module," Agriculture, MDPI, vol. 11(7), pages 1-15, July.
    14. Upma Singh & Mohammad Rizwan & Muhannad Alaraj & Ibrahim Alsaidan, 2021. "A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments," Energies, MDPI, vol. 14(16), pages 1-21, August.
    15. Fei Liao & Liangli Ma & Jingjing Pei & Linshan Tan, 2019. "Combined Self-Attention Mechanism for Chinese Named Entity Recognition in Military," Future Internet, MDPI, vol. 11(8), pages 1-11, August.
    16. Nasir Ayub & Muhammad Irfan & Muhammad Awais & Usman Ali & Tariq Ali & Mohammed Hamdi & Abdullah Alghamdi & Fazal Muhammad, 2020. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler," Energies, MDPI, vol. 13(19), pages 1-21, October.
    17. Yih-Der Lee & Jheng-Lun Jiang & Yuan-Hsiang Ho & Wei-Chen Lin & Hsin-Ching Chih & Wei-Tzer Huang, 2020. "Neutral Current Reduction in Three-Phase Four-Wire Distribution Feeders by Optimal Phase Arrangement Based on a Full-Scale Net Load Model Derived from the FTU Data," Energies, MDPI, vol. 13(7), pages 1-20, April.
    18. Tomasz Śmiałkowski & Andrzej Czyżewski, 2022. "Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters," Energies, MDPI, vol. 15(24), pages 1-23, December.
    19. Kong, Weicong & Jia, Youwei & Dong, Zhao Yang & Meng, Ke & Chai, Songjian, 2020. "Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting," Applied Energy, Elsevier, vol. 280(C).
    20. Akash Koppa & Dominik Rains & Petra Hulsman & Rafael Poyatos & Diego G. Miralles, 2022. "A deep learning-based hybrid model of global terrestrial evaporation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5444-:d:431029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.