IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1738-d341698.html
   My bibliography  Save this article

Hybrid Sensing of Internal and Surface Partial Discharges in Air-Insulated Medium Voltage Switchgear

Author

Listed:
  • Ghulam Amjad Hussain

    (Department of Engineering, College of Engineering and Applied Sciences, American University of Kuwait, Safat 13034, Kuwait)

  • Ashraf A. Zaher

    (Department of Engineering, College of Engineering and Applied Sciences, American University of Kuwait, Safat 13034, Kuwait)

  • Detlef Hummes

    (Department of Engineering, College of Engineering and Applied Sciences, American University of Kuwait, Safat 13034, Kuwait)

  • Madia Safdar

    (Department of Electrical and Automation Engineering, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland)

  • Matti Lehtonen

    (Department of Electrical and Automation Engineering, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland)

Abstract

Partial discharge (PD) measurements have proved their reliability for health monitoring of insulation systems in power system components including synchronous generators, power transformers, switchgear and cables etc. Online condition monitoring and pro-active detection of PD faults have been highly demanded over the last two decades. This paper provides results from a research project to develop advanced non-intrusive sensing technologies that are cost effective, reliable and efficient for early detection of PD faults in medium voltage (MV) and high voltage (HV) air-insulated switchgear. Three sensors (high frequency E-field ( D -dot) sensor, Rogowski coil and loop antenna) have been developed and tested under various PD faults and their performance were evaluated in comparison with high frequency current transformer (HFCT) which is being used commercially for PD testing and measurement. Among these three sensors, it is shown that D -dot sensor and Rogowski coil are more dependable when it comes to the PD measurements due to their high signal to noise ratio and hence high accuracy. These sensors can be customized according to a specific application and can be connected together with one data acquisition device while developing an online condition monitoring system.

Suggested Citation

  • Ghulam Amjad Hussain & Ashraf A. Zaher & Detlef Hummes & Madia Safdar & Matti Lehtonen, 2020. "Hybrid Sensing of Internal and Surface Partial Discharges in Air-Insulated Medium Voltage Switchgear," Energies, MDPI, vol. 13(7), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1738-:d:341698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1738/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1738/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuanlin Luo & Zhaohui Li & Hong Wang, 2017. "A Review of Online Partial Discharge Measurement of Large Generators," Energies, MDPI, vol. 10(11), pages 1-32, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaseen Ahmed Mohammed Alsumaidaee & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Chai Phing Chen & Kharudin Ali, 2022. "Review of Medium-Voltage Switchgear Fault Detection in a Condition-Based Monitoring System by Using Deep Learning," Energies, MDPI, vol. 15(18), pages 1-34, September.
    2. Sinda Kaziz & Mohamed Hadj Said & Antonino Imburgia & Bilel Maamer & Denis Flandre & Pietro Romano & Fares Tounsi, 2023. "Radiometric Partial Discharge Detection: A Review," Energies, MDPI, vol. 16(4), pages 1-33, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Dao & Yun Zeng & Yidong Zou & Xiang Li & Jing Qian, 2021. "Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review," Energies, MDPI, vol. 14(23), pages 1-16, November.
    2. Muhammad Shafiq & Ivar Kiitam & Kimmo Kauhaniemi & Paul Taklaja & Lauri Kütt & Ivo Palu, 2020. "Performance Comparison of PD Data Acquisition Techniques for Condition Monitoring of Medium Voltage Cables," Energies, MDPI, vol. 13(16), pages 1-14, August.
    3. Donny Soh & Sivaneasan Bala Krishnan & Jacob Abraham & Lai Kai Xian & Tseng King Jet & Jimmy Fu Yongyi, 2022. "Partial Discharge Diagnostics: Data Cleaning and Feature Extraction," Energies, MDPI, vol. 15(2), pages 1-12, January.
    4. Dmitry A. Ivanov & Marat F. Sadykov & Danil A. Yaroslavsky & Aleksandr V. Golenishchev-Kutuzov & Tatyana G. Galieva, 2021. "Non-Contact Methods for High-Voltage Insulation Equipment Diagnosis during Operation," Energies, MDPI, vol. 14(18), pages 1-16, September.
    5. Sara Mantach & Ahmed Ashraf & Hamed Janani & Behzad Kordi, 2021. "A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set," Energies, MDPI, vol. 14(5), pages 1-16, March.
    6. Alexander S. Karandaev & Igor M. Yachikov & Andrey A. Radionov & Ivan V. Liubimov & Nikolay N. Druzhinin & Ekaterina A. Khramshina, 2022. "Fuzzy Algorithms for Diagnosis of Furnace Transformer Insulation Condition," Energies, MDPI, vol. 15(10), pages 1-21, May.
    7. Christian Gianoglio & Edoardo Ragusa & Paolo Gastaldo & Federico Gallesi & Francesco Guastavino, 2021. "Online Predictive Maintenance Monitoring Adopting Convolutional Neural Networks," Energies, MDPI, vol. 14(15), pages 1-23, August.
    8. Dimosthenis Verginadis & Athanasios Karlis & Michael G. Danikas & Jose A. Antonino-Daviu, 2021. "Investigation of Factors Affecting Partial Discharges on Epoxy Resin: Simulation, Experiments, and Reference on Electrical Machines," Energies, MDPI, vol. 14(20), pages 1-18, October.
    9. Sara Mantach & Abdulla Lutfi & Hamed Moradi Tavasani & Ahmed Ashraf & Ayman El-Hag & Behzad Kordi, 2022. "Deep Learning in High Voltage Engineering: A Literature Review," Energies, MDPI, vol. 15(14), pages 1-32, July.
    10. Christian Gianoglio & Edoardo Ragusa & Andrea Bruzzone & Paolo Gastaldo & Rodolfo Zunino & Francesco Guastavino, 2020. "Unsupervised Monitoring System for Predictive Maintenance of High Voltage Apparatus," Energies, MDPI, vol. 13(5), pages 1-16, March.
    11. Anderson J. C. Sena & Rodrigo M. S. de Oliveira & Júlio A. S. do Nascimento, 2021. "Frequency Resolved Partial Discharges Based on Spectral Pulse Counting," Energies, MDPI, vol. 14(21), pages 1-36, October.
    12. Jonathan dos Santos Cruz & Fabiano Fruett & Renato da Rocha Lopes & Fabio Luiz Takaki & Claudia de Andrade Tambascia & Eduardo Rodrigues de Lima & Mateus Giesbrecht, 2022. "Partial Discharges Monitoring for Electric Machines Diagnosis: A Review," Energies, MDPI, vol. 15(21), pages 1-31, October.
    13. Krzysztof Walczak, 2023. "Localization of HV Insulation Defects Using a System of Associated Capacitive Sensors," Energies, MDPI, vol. 16(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1738-:d:341698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.