IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1694-d116397.html
   My bibliography  Save this article

A Review of Online Partial Discharge Measurement of Large Generators

Author

Listed:
  • Yuanlin Luo

    (School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Zhaohui Li

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Hong Wang

    (Three Gorges Hydropower Plant, China Yangtze Power Corporation, Yichang 443002, China)

Abstract

Online partial discharge (PD) measurements have long been used as an effective means to assess the condition of the stator windings of large generators. An increase in the use of PD online measurement systems during the last decade is evident. Improvements in the detection capabilities are partly the reason for the increased popularity. Another reason has been the development of digital signal processing techniques. In addition, rapid progress is being made in automated single PD source classification. However, there are still some factors hindering wider application of the system, such as the complex PD mechanism and PD pulse propagation in stator windings, the presence of detrimental noise and disturbances on-site, and multiple PD sources occurring simultaneously. To avoid repetition of past work and to provide an overview for fresh researchers in this area, this paper presents a comprehensive survey of the state-of-the-art knowledge on PD mechanism, PD pulse propagation in stator windings, PD signal detection methods and signal processing techniques. Areas for further research are also presented.

Suggested Citation

  • Yuanlin Luo & Zhaohui Li & Hong Wang, 2017. "A Review of Online Partial Discharge Measurement of Large Generators," Energies, MDPI, vol. 10(11), pages 1-32, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1694-:d:116397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1694/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1694/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdullahi Abubakar Mas’ud & Ricardo Albarracín & Jorge Alfredo Ardila-Rey & Firdaus Muhammad-Sukki & Hazlee Azil Illias & Nurul Aini Bani & Abu Bakar Munir, 2016. "Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions," Energies, MDPI, vol. 9(8), pages 1-18, July.
    2. Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey & Ricardo Albarracín & Firdaus Muhammad-Sukki & Nurul Aini Bani, 2017. "Comparison of the Performance of Artificial Neural Networks and Fuzzy Logic for Recognizing Different Partial Discharge Sources," Energies, MDPI, vol. 10(7), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Shafiq & Ivar Kiitam & Kimmo Kauhaniemi & Paul Taklaja & Lauri Kütt & Ivo Palu, 2020. "Performance Comparison of PD Data Acquisition Techniques for Condition Monitoring of Medium Voltage Cables," Energies, MDPI, vol. 13(16), pages 1-14, August.
    2. Dimosthenis Verginadis & Athanasios Karlis & Michael G. Danikas & Jose A. Antonino-Daviu, 2021. "Investigation of Factors Affecting Partial Discharges on Epoxy Resin: Simulation, Experiments, and Reference on Electrical Machines," Energies, MDPI, vol. 14(20), pages 1-18, October.
    3. Ghulam Amjad Hussain & Ashraf A. Zaher & Detlef Hummes & Madia Safdar & Matti Lehtonen, 2020. "Hybrid Sensing of Internal and Surface Partial Discharges in Air-Insulated Medium Voltage Switchgear," Energies, MDPI, vol. 13(7), pages 1-16, April.
    4. Donny Soh & Sivaneasan Bala Krishnan & Jacob Abraham & Lai Kai Xian & Tseng King Jet & Jimmy Fu Yongyi, 2022. "Partial Discharge Diagnostics: Data Cleaning and Feature Extraction," Energies, MDPI, vol. 15(2), pages 1-12, January.
    5. Dmitry A. Ivanov & Marat F. Sadykov & Danil A. Yaroslavsky & Aleksandr V. Golenishchev-Kutuzov & Tatyana G. Galieva, 2021. "Non-Contact Methods for High-Voltage Insulation Equipment Diagnosis during Operation," Energies, MDPI, vol. 14(18), pages 1-16, September.
    6. Christian Gianoglio & Edoardo Ragusa & Paolo Gastaldo & Federico Gallesi & Francesco Guastavino, 2021. "Online Predictive Maintenance Monitoring Adopting Convolutional Neural Networks," Energies, MDPI, vol. 14(15), pages 1-23, August.
    7. Sara Mantach & Ahmed Ashraf & Hamed Janani & Behzad Kordi, 2021. "A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set," Energies, MDPI, vol. 14(5), pages 1-16, March.
    8. Christian Gianoglio & Edoardo Ragusa & Andrea Bruzzone & Paolo Gastaldo & Rodolfo Zunino & Francesco Guastavino, 2020. "Unsupervised Monitoring System for Predictive Maintenance of High Voltage Apparatus," Energies, MDPI, vol. 13(5), pages 1-16, March.
    9. Jonathan dos Santos Cruz & Fabiano Fruett & Renato da Rocha Lopes & Fabio Luiz Takaki & Claudia de Andrade Tambascia & Eduardo Rodrigues de Lima & Mateus Giesbrecht, 2022. "Partial Discharges Monitoring for Electric Machines Diagnosis: A Review," Energies, MDPI, vol. 15(21), pages 1-31, October.
    10. Sara Mantach & Abdulla Lutfi & Hamed Moradi Tavasani & Ahmed Ashraf & Ayman El-Hag & Behzad Kordi, 2022. "Deep Learning in High Voltage Engineering: A Literature Review," Energies, MDPI, vol. 15(14), pages 1-32, July.
    11. Anderson J. C. Sena & Rodrigo M. S. de Oliveira & Júlio A. S. do Nascimento, 2021. "Frequency Resolved Partial Discharges Based on Spectral Pulse Counting," Energies, MDPI, vol. 14(21), pages 1-36, October.
    12. Alexander S. Karandaev & Igor M. Yachikov & Andrey A. Radionov & Ivan V. Liubimov & Nikolay N. Druzhinin & Ekaterina A. Khramshina, 2022. "Fuzzy Algorithms for Diagnosis of Furnace Transformer Insulation Condition," Energies, MDPI, vol. 15(10), pages 1-21, May.
    13. Krzysztof Walczak, 2023. "Localization of HV Insulation Defects Using a System of Associated Capacitive Sensors," Energies, MDPI, vol. 16(5), pages 1-15, February.
    14. Fang Dao & Yun Zeng & Yidong Zou & Xiang Li & Jing Qian, 2021. "Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review," Energies, MDPI, vol. 14(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minh-Tuan Nguyen & Viet-Hung Nguyen & Suk-Jun Yun & Yong-Hwa Kim, 2018. "Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 11(5), pages 1-13, May.
    2. Jiaying Deng & Wenhai Zhang & Xiaomei Yang, 2019. "Recognition and Classification of Incipient Cable Failures Based on Variational Mode Decomposition and a Convolutional Neural Network," Energies, MDPI, vol. 12(10), pages 1-16, May.
    3. Mohammed A. Shams & Hussein I. Anis & Mohammed El-Shahat, 2021. "Denoising of Heavily Contaminated Partial Discharge Signals in High-Voltage Cables Using Maximal Overlap Discrete Wavelet Transform," Energies, MDPI, vol. 14(20), pages 1-22, October.
    4. Wen Si & Simeng Li & Huaishuo Xiao & Qingquan Li & Yalin Shi & Tongqiao Zhang, 2018. "Defect Pattern Recognition Based on Partial Discharge Characteristics of Oil-Pressboard Insulation for UHVDC Converter Transformer," Energies, MDPI, vol. 11(3), pages 1-19, March.
    5. Haresh Kumar & Muhammad Shafiq & Kimmo Kauhaniemi & Mohammed Elmusrati, 2024. "A Review on the Classification of Partial Discharges in Medium-Voltage Cables: Detection, Feature Extraction, Artificial Intelligence-Based Classification, and Optimization Techniques," Energies, MDPI, vol. 17(5), pages 1-31, February.
    6. Ana C. N. Pardauil & Thiago P. Nascimento & Marcelo R. S. Siqueira & Ubiratan H. Bezerra & Werbeston D. Oliveira, 2020. "Combined Approach Using Clustering-Random Forest to Evaluate Partial Discharge Patterns in Hydro Generators," Energies, MDPI, vol. 13(22), pages 1-18, November.
    7. Vo-Nguyen Tuyet-Doan & Tien-Tung Nguyen & Minh-Tuan Nguyen & Jong-Ho Lee & Yong-Hwa Kim, 2020. "Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 13(8), pages 1-16, April.
    8. Enas Taha Sayed & Hegazy Rezk & Abdul Ghani Olabi & Mohamed R. Gomaa & Yahia B. Hassan & Shek Mohammad Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2022. "Application of Artificial Intelligence to Improve the Thermal Energy and Exergy of Nanofluid-Based PV Thermal/Nano-Enhanced Phase Change Material," Energies, MDPI, vol. 15(22), pages 1-13, November.
    9. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Abdullah G. Alharbi & Sulaiman Alshammari & Yahia B. Hassan, 2023. "Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    10. Luca Barbieri & Andrea Villa & Roberto Malgesini & Daniele Palladini & Christian Laurano, 2021. "An Innovative Sensor for Cable Joint Monitoring and Partial Discharge Localization," Energies, MDPI, vol. 14(14), pages 1-12, July.
    11. Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey & Ricardo Albarracín & Firdaus Muhammad-Sukki & Nurul Aini Bani, 2017. "Comparison of the Performance of Artificial Neural Networks and Fuzzy Logic for Recognizing Different Partial Discharge Sources," Energies, MDPI, vol. 10(7), pages 1-20, July.
    12. Marek Florkowski, 2021. "Anomaly Detection, Trend Evolution, and Feature Extraction in Partial Discharge Patterns," Energies, MDPI, vol. 14(13), pages 1-18, June.
    13. Hegazy Rezk & A. G. Olabi & Mohammad Ali Abdelkareem & Hussein M. Maghrabie & Enas Taha Sayed, 2023. "Fuzzy Modelling and Optimization of Yeast-MFC for Simultaneous Wastewater Treatment and Electrical Energy Production," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    14. Ju Tang & Miao Jin & Fuping Zeng & Siyuan Zhou & Xiaoxing Zhang & Yi Yang & Yan Ma, 2017. "Feature Selection for Partial Discharge Severity Assessment in Gas-Insulated Switchgear Based on Minimum Redundancy and Maximum Relevance," Energies, MDPI, vol. 10(10), pages 1-14, October.
    15. Sonia Barrios & David Buldain & María Paz Comech & Ian Gilbert & Iñaki Orue, 2019. "Partial Discharge Classification Using Deep Learning Methods—Survey of Recent Progress," Energies, MDPI, vol. 12(13), pages 1-16, June.
    16. Ju Tang & Xu Yang & Dong Yang & Qiang Yao & Yulong Miao & Chaohai Zhang & Fuping Zeng, 2017. "Using SF 6 Decomposed Component Analysis for the Diagnosis of Partial Discharge Severity Initiated by Free Metal Particle Defect," Energies, MDPI, vol. 10(8), pages 1-17, August.
    17. Ju Tang & Xu Yang & Gaoxiang Ye & Qiang Yao & Yulong Miao & Fuping Zeng, 2017. "Decomposition Characteristics of SF 6 and Partial Discharge Recognition under Negative DC Conditions," Energies, MDPI, vol. 10(4), pages 1-16, April.
    18. Zhenghai Liao & Dazheng Wang & Liangliang Tang & Jinli Ren & Zhuming Liu, 2017. "A Heuristic Diagnostic Method for a PV System: Triple-Layered Particle Swarm Optimization–Back-Propagation Neural Network," Energies, MDPI, vol. 10(2), pages 1-11, February.
    19. Marek Florkowski, 2020. "Classification of Partial Discharge Images Using Deep Convolutional Neural Networks," Energies, MDPI, vol. 13(20), pages 1-17, October.
    20. Habib Benbouhenni & Nicu Bizon, 2021. "Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System," Mathematics, MDPI, vol. 9(19), pages 1-36, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1694-:d:116397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.