IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3232-d1115431.html
   My bibliography  Save this article

Correction: Zhou et al. Transformer Fault Diagnosis Model Based on Improved Gray Wolf Optimizer and Probabilistic Neural Network. Energies 2021, 14 , 3029

Author

Listed:
  • Yichen Zhou

    (College of Qianhu, Nanchang University, Nanchang 330031, China)

  • Xiaohui Yang

    (College of Information Engineering, Nanchang University, Nanchang 330031, China)

  • Lingyu Tao

    (College of Information Engineering, Nanchang University, Nanchang 330031, China)

  • Li Yang

    (College of Information Engineering, Nanchang University, Nanchang 330031, China)

Abstract

In the original publication [...]

Suggested Citation

  • Yichen Zhou & Xiaohui Yang & Lingyu Tao & Li Yang, 2023. "Correction: Zhou et al. Transformer Fault Diagnosis Model Based on Improved Gray Wolf Optimizer and Probabilistic Neural Network. Energies 2021, 14 , 3029," Energies, MDPI, vol. 16(7), pages 1-3, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3232-:d:1115431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3232/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3232/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yichen Zhou & Xiaohui Yang & Lingyu Tao & Li Yang, 2021. "Transformer Fault Diagnosis Model Based on Improved Gray Wolf Optimizer and Probabilistic Neural Network," Energies, MDPI, vol. 14(11), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.
    2. Sara Mantach & Abdulla Lutfi & Hamed Moradi Tavasani & Ahmed Ashraf & Ayman El-Hag & Behzad Kordi, 2022. "Deep Learning in High Voltage Engineering: A Literature Review," Energies, MDPI, vol. 15(14), pages 1-32, July.
    3. Mohammad H. Nadimi-Shahraki & Shokooh Taghian & Seyedali Mirjalili & Laith Abualigah, 2022. "Binary Aquila Optimizer for Selecting Effective Features from Medical Data: A COVID-19 Case Study," Mathematics, MDPI, vol. 10(11), pages 1-24, June.
    4. Ruijun Guo & Guobin Zhang & Qian Zhang & Lei Zhou & Haicun Yu & Meng Lei & You Lv, 2021. "An Adaptive Early Fault Detection Model of Induced Draft Fans Based on Multivariate State Estimation Technique," Energies, MDPI, vol. 14(16), pages 1-18, August.

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3232-:d:1115431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.