Exergetic, Economic and Exergo-Environmental Analysis of Bottoming Power Cycles Operating with CO 2 -Based Binary Mixture
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Costante M. Invernizzi & Abubakr Ayub & Gioele Di Marcoberardino & Paolo Iora, 2019. "Pure and Hydrocarbon Binary Mixtures as Possible Alternatives Working Fluids to the Usual Organic Rankine Cycles Biomass Conversion Systems," Energies, MDPI, vol. 12(21), pages 1-17, October.
- Marchionni, Matteo & Bianchi, Giuseppe & Tassou, Savvas A., 2018. "Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state," Energy, Elsevier, vol. 148(C), pages 1140-1152.
- Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
- Kim, Min Seok & Ahn, Yoonhan & Kim, Beomjoo & Lee, Jeong Ik, 2016. "Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle," Energy, Elsevier, vol. 111(C), pages 893-909.
- Al-Sulaiman, Fahad A. & Atif, Maimoon, 2015. "Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower," Energy, Elsevier, vol. 82(C), pages 61-71.
- Costante Mario Invernizzi, 2017. "Prospects of Mixtures as Working Fluids in Real-Gas Brayton Cycles," Energies, MDPI, vol. 10(10), pages 1-15, October.
- Abubakr Ayub & Costante M. Invernizzi & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2020. "Carbon Dioxide Mixtures as Working Fluid for High-Temperature Heat Recovery: A Thermodynamic Comparison with Transcritical Organic Rankine Cycles," Energies, MDPI, vol. 13(15), pages 1-18, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Maria Portarapillo & Almerinda Di Benedetto, 2021. "Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns," Energies, MDPI, vol. 14(10), pages 1-12, May.
- Cheng, Kunlin & Yu, Jianchi & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2024. "Performance comparison between closed-Brayton-cycle power generation systems using supercritical carbon dioxide and helium–xenon mixture at ultra-high turbine inlet temperatures on hypersonic vehicles," Energy, Elsevier, vol. 293(C).
- Min Xie & Jian Cheng & Xiaohan Ren & Shuo Wang & Pengcheng Che & Chunwei Zhang, 2022. "System Performance Analyses of Supercritical CO 2 Brayton Cycle for Sodium-Cooled Fast Reactor," Energies, MDPI, vol. 15(10), pages 1-19, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guo, Jia-Qi & Li, Ming-Jia & Xu, Jin-Liang & Yan, Jun-Jie & Wang, Kun, 2019. "Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems," Energy, Elsevier, vol. 173(C), pages 785-798.
- Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
- Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Paul Tafur-Escanta & Robert Valencia-Chapi & Ignacio López-Paniagua & Luis Coco-Enríquez & Javier Muñoz-Antón, 2021. "Supercritical CO 2 Binary Mixtures for Recompression Brayton s-CO 2 Power Cycles Coupled to Solar Thermal Energy Plants," Energies, MDPI, vol. 14(13), pages 1-27, July.
- Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
- Duniam, Sam & Veeraragavan, Ananthanarayanan, 2019. "Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power," Energy, Elsevier, vol. 187(C).
- Wang, Yuan & Zhu, Lin & He, Yangdong & Yu, Jianting & Zhang, Chaoli & Wang, Zi, 2023. "Comparative exergoeconomic analysis of atmosphere and pressurized CLC power plants coupled with supercritical CO2 cycle," Energy, Elsevier, vol. 265(C).
- Li, Ming-Jia & Xu, Jin-Liang & Cao, Feng & Guo, Jia-Qi & Tong, Zi-Xiang & Zhu, Han-Hui, 2019. "The investigation of thermo-economic performance and conceptual design for the miniaturized lead-cooled fast reactor composing supercritical CO2 power cycle," Energy, Elsevier, vol. 173(C), pages 174-195.
- Vedran Mrzljak & Igor Poljak & Maro Jelić & Jasna Prpić-Oršić, 2023. "Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads," Energies, MDPI, vol. 16(15), pages 1-26, July.
- Muhammed Saeed & Khaled Alawadi & Sung Chul Kim, 2020. "Performance of Supercritical CO 2 Power Cycle and Its Turbomachinery with the Printed Circuit Heat Exchanger with Straight and Zigzag Channels," Energies, MDPI, vol. 14(1), pages 1-25, December.
- Giovanni Manente & Mário Costa, 2020. "On the Conceptual Design of Novel Supercritical CO 2 Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 13(2), pages 1-31, January.
- Zhao, Yu & Chang, Zhiyuan & Zhao, Yuanyang & Yang, Qichao & Liu, Guangbin & Li, Liansheng, 2023. "Performance comparison of three supercritical CO2 solar thermal power systems with compressed fluid and molten salt energy storage," Energy, Elsevier, vol. 282(C).
- Wang, Di & Han, Xinrui & Li, Haoyu & Li, Xiaoli, 2023. "Dynamic simulation and parameter analysis of solar-coal hybrid power plant based on the supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 272(C).
- Gotelip, Thiago & Gampe, Uwe & Glos, Stefan, 2022. "Optimization strategies of different SCO2 architectures for gas turbine bottoming cycle applications," Energy, Elsevier, vol. 250(C).
- Di Marcoberardino, G. & Morosini, E. & Manzolini, G., 2022. "Preliminary investigation of the influence of equations of state on the performance of CO2 + C6F6 as innovative working fluid in transcritical cycles," Energy, Elsevier, vol. 238(PB).
- Abubakr Ayub & Costante M. Invernizzi & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2020. "Carbon Dioxide Mixtures as Working Fluid for High-Temperature Heat Recovery: A Thermodynamic Comparison with Transcritical Organic Rankine Cycles," Energies, MDPI, vol. 13(15), pages 1-18, August.
- Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
- Saeed, Muhammad & Kim, Man-Hoe, 2022. "A newly proposed supercritical carbon dioxide Brayton cycle configuration to enhance energy sources integration capability," Energy, Elsevier, vol. 239(PA).
- Guccione, Salvatore & Guedez, Rafael, 2023. "Techno-economic optimization of molten salt based CSP plants through integration of supercritical CO2 cycles and hybridization with PV and electric heaters," Energy, Elsevier, vol. 283(C).
- Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
More about this item
Keywords
CO 2 -based binary mixture; bottoming power cycles; exergetic analysis; CO 2 emissions savings; sustainability index; exergo-environmental impact indices;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5080-:d:421327. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.