Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.03.099
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
- Hu, Lian & Chen, Deqi & Huang, Yanping & Li, Le & Cao, Yiding & Yuan, Dewen & Wang, Junfeng & Pan, Liangming, 2015. "Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor," Energy, Elsevier, vol. 89(C), pages 874-886.
- Pham, H.S. & Alpy, N. & Ferrasse, J.H. & Boutin, O. & Quenaut, J. & Tothill, M. & Haubensack, D. & Saez, M., 2015. "Mapping of the thermodynamic performance of the supercritical CO2 cycle and optimisation for a small modular reactor and a sodium-cooled fast reactor," Energy, Elsevier, vol. 87(C), pages 412-424.
- Singh, Rajinesh & Rowlands, Andrew S. & Miller, Sarah A., 2013. "Effects of relative volume-ratios on dynamic performance of a direct-heated supercritical carbon-dioxide closed Brayton cycle in a solar-thermal power plant," Energy, Elsevier, vol. 55(C), pages 1025-1032.
- Al-Sulaiman, Fahad A. & Atif, Maimoon, 2015. "Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower," Energy, Elsevier, vol. 82(C), pages 61-71.
- Singh, Rajinesh & Miller, Sarah A. & Rowlands, Andrew S. & Jacobs, Peter A., 2013. "Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant," Energy, Elsevier, vol. 50(C), pages 194-204.
- Guo, Jiangfeng, 2016. "Design analysis of supercritical carbon dioxide recuperator," Applied Energy, Elsevier, vol. 164(C), pages 21-27.
- Li, Ming-Jia & Song, Chen-Xi & Tao, Wen-Quan, 2016. "A hybrid model for explaining the short-term dynamics of energy efficiency of China’s thermal power plants," Applied Energy, Elsevier, vol. 169(C), pages 738-747.
- Li, Xin & Kong, Weiqiang & Wang, Zhifeng & Chang, Chun & Bai, Fengwu, 2010. "Thermal model and thermodynamic performance of molten salt cavity receiver," Renewable Energy, Elsevier, vol. 35(5), pages 981-988.
- Xi, Huan & Li, Ming-Jia & Xu, Chao & He, Ya-Ling, 2013. "Parametric optimization of regenerative organic Rankine cycle (ORC) for low grade waste heat recovery using genetic algorithm," Energy, Elsevier, vol. 58(C), pages 473-482.
- Akbari, Ata D. & Mahmoudi, Seyed M.S., 2014. "Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle," Energy, Elsevier, vol. 78(C), pages 501-512.
- Wang, Kun & He, Ya-Ling & Qiu, Yu & Zhang, Yuwen, 2016. "A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver," Renewable Energy, Elsevier, vol. 89(C), pages 93-107.
- Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
- Sarkar, Jahar, 2009. "Second law analysis of supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 34(9), pages 1172-1178.
- Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Tellez, Felix M., 2013. "Evaluation of the potential of central receiver solar power plants: Configuration, optimization and trends," Applied Energy, Elsevier, vol. 112(C), pages 274-288.
- Iverson, Brian D. & Conboy, Thomas M. & Pasch, James J. & Kruizenga, Alan M., 2013. "Supercritical CO2 Brayton cycles for solar-thermal energy," Applied Energy, Elsevier, vol. 111(C), pages 957-970.
- Wang, Jiangfeng & Sun, Zhixin & Dai, Yiping & Ma, Shaolin, 2010. "Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network," Applied Energy, Elsevier, vol. 87(4), pages 1317-1324, April.
- Padilla, Ricardo Vasquez & Soo Too, Yen Chean & Benito, Regano & Stein, Wes, 2015. "Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers," Applied Energy, Elsevier, vol. 148(C), pages 348-365.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Battisti, Felipe G. & Cardemil, José M. & da Silva, Alexandre K., 2016. "A multivariable optimization of a Brayton power cycle operating with CO2 as working fluid," Energy, Elsevier, vol. 112(C), pages 908-916.
- Rovira, Antonio & Muñoz, Marta & Sánchez, Consuelo & Martínez-Val, José María, 2015. "Proposal and study of a balanced hybrid Rankine–Brayton cycle for low-to-moderate temperature solar power plants," Energy, Elsevier, vol. 89(C), pages 305-317.
- Wang, Kun & Li, Ming-Jia & Guo, Jia-Qi & Li, Peiwen & Liu, Zhan-Bin, 2018. "A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants," Applied Energy, Elsevier, vol. 212(C), pages 109-121.
- Zhu, Han-Hui & Wang, Kun & He, Ya-Ling, 2017. "Thermodynamic analysis and comparison for different direct-heated supercritical CO2 Brayton cycles integrated into a solar thermal power tower system," Energy, Elsevier, vol. 140(P1), pages 144-157.
- Ma, Yuegeng & Liu, Ming & Yan, Junjie & Liu, Jiping, 2017. "Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 140(P1), pages 746-756.
- Ma, Yuegeng & Zhang, Xuwei & Liu, Ming & Yan, Junjie & Liu, Jiping, 2018. "Proposal and assessment of a novel supercritical CO2 Brayton cycle integrated with LiBr absorption chiller for concentrated solar power applications," Energy, Elsevier, vol. 148(C), pages 839-854.
- Park, Joo Hyun & Park, Hyun Sun & Kwon, Jin Gyu & Kim, Tae Ho & Kim, Moo Hwan, 2018. "Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors," Energy, Elsevier, vol. 160(C), pages 520-535.
- Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
- Fallah, M. & Mohammadi, Z. & Mahmoudi, S.M. Seyed, 2022. "Advanced exergy analysis of the combined S–CO2/ORC system," Energy, Elsevier, vol. 241(C).
- Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
- Guo, Jia-Qi & Li, Ming-Jia & He, Ya-Ling & Xu, Jin-Liang, 2019. "A study of new method and comprehensive evaluation on the improved performance of solar power tower plant with the CO2-based mixture cycles," Applied Energy, Elsevier, vol. 256(C).
- Reyes-Belmonte, M.A. & Sebastián, A. & Romero, M. & González-Aguilar, J., 2016. "Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant," Energy, Elsevier, vol. 112(C), pages 17-27.
- Guo, Jia-Qi & Li, Ming-Jia & Xu, Jin-Liang & Yan, Jun-Jie & Wang, Kun, 2019. "Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems," Energy, Elsevier, vol. 173(C), pages 785-798.
- Xinyu Miao & Haochun Zhang & Qi Wang & Wenbo Sun & Yan Xia, 2022. "Thermodynamic, Exergoeconomic and Multi-Objective Analyses of Supercritical N 2 O-He Recompression Brayton Cycle for a Nuclear Spacecraft Application," Energies, MDPI, vol. 15(21), pages 1-31, November.
- Atif, Maimoon. & Al-Sulaiman, Fahad A., 2017. "Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 153-167.
- Liu, Yaping & Wang, Ying & Huang, Diangui, 2019. "Supercritical CO2 Brayton cycle: A state-of-the-art review," Energy, Elsevier, vol. 189(C).
- Al-Sulaiman, Fahad A. & Atif, Maimoon, 2015. "Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower," Energy, Elsevier, vol. 82(C), pages 61-71.
- Zhao, Yu & Chang, Zhiyuan & Zhao, Yuanyang & Yang, Qichao & Liu, Guangbin & Li, Liansheng, 2023. "Performance comparison of three supercritical CO2 solar thermal power systems with compressed fluid and molten salt energy storage," Energy, Elsevier, vol. 282(C).
- Luu, Minh Tri & Milani, Dia & McNaughton, Robbie & Abbas, Ali, 2017. "Analysis for flexible operation of supercritical CO2 Brayton cycle integrated with solar thermal systems," Energy, Elsevier, vol. 124(C), pages 752-771.
- Duniam, Sam & Veeraragavan, Ananthanarayanan, 2019. "Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power," Energy, Elsevier, vol. 187(C).
More about this item
Keywords
Solar power tower; Supercritical CO2 Brayton cycles; Molten salt; Efficiency; Specific work; Thermal energy storage;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:195:y:2017:i:c:p:819-836. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.