IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224033425.html
   My bibliography  Save this article

Optimisation of Brayton cycle CO2-based binary mixtures: An application for waste heat recovery of marine low-speed diesel engines exhaust gas

Author

Listed:
  • Xie, Liangtao
  • Yang, Jianguo
  • Yang, Xin
  • Yu, Yonghua
  • He, Yuhai
  • Hu, Nao
  • Fan, Yu
  • Sun, Sicong
  • Dong, Fei
  • Cao, Bingxin

Abstract

The energy-saving capabilities and efficient operation of marine low-speed diesel engines (MLDE) is a key emphasis for the main power source for ocean transportation. The purpose of the supercritical carbon dioxide recompression Brayton cycle (SCRBC) is to capture and utilise waste heat emitted by the engine's exhaust gas. However, the SCRBC performance will be severely affected by the large temperature fluctuations of ocean-going vessels during operation and high ambient temperatures in the cabin. A SCRBC model was built using the exhaust gas test data as the boundary conditions and validated using the Sandia National Laboratory (SNL) test data. The physical characteristics of the working fluids were evaluated by adding other fluids to CO2 in specific proportions to modify the critical point and increase cycle efficiency. The results demonstrated that employing CO2-based binary working fluids with low alkane and hydrogen sulfide (H2S) enhanced the recovery power, with the most significant increase obtained by the addition of 16.48 % H2S, which increased the power by 9.72 kW and improved the Brayton cycle efficiency by 3.31 %. Compared to the MLDE at 100 % load, the total efficiency increased by 1.77 % and the BSFC decreased by 6.76 (g kW−1 h−1) using CO2-H2S as the working fluid. The analysis of the SCRBC system component exergy losses showed that the cooler had the highest exergy losses. Adding other fluids to CO2 reduced the exergy losses of each component with the SCRBC system exergy losses decreasing from 162.97 to 129.90 kW and the exergy loss efficiency decreasing from 24.24 % to 22.65 %. The use of CO2-based binary working fluids specifically designed for ambient temperature may be expanded to other engines to enhance the efficiency of waste heat recovery.

Suggested Citation

  • Xie, Liangtao & Yang, Jianguo & Yang, Xin & Yu, Yonghua & He, Yuhai & Hu, Nao & Fan, Yu & Sun, Sicong & Dong, Fei & Cao, Bingxin, 2024. "Optimisation of Brayton cycle CO2-based binary mixtures: An application for waste heat recovery of marine low-speed diesel engines exhaust gas," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033425
    DOI: 10.1016/j.energy.2024.133564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224033425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Haroon & Nadeem Ahmed Sheikh & Abubakr Ayub & Rasikh Tariq & Farooq Sher & Aklilu Tesfamichael Baheta & Muhammad Imran, 2020. "Exergetic, Economic and Exergo-Environmental Analysis of Bottoming Power Cycles Operating with CO 2 -Based Binary Mixture," Energies, MDPI, vol. 13(19), pages 1-19, September.
    2. Zhang, Ruiyuan & Su, Wen & Lin, Xinxing & Zhou, Naijun & Zhao, Li, 2020. "Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines," Energy, Elsevier, vol. 209(C).
    3. Hu, Lian & Chen, Deqi & Huang, Yanping & Li, Le & Cao, Yiding & Yuan, Dewen & Wang, Junfeng & Pan, Liangming, 2015. "Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor," Energy, Elsevier, vol. 89(C), pages 874-886.
    4. Guo, Jia-Qi & Li, Ming-Jia & Xu, Jin-Liang & Yan, Jun-Jie & Wang, Kun, 2019. "Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems," Energy, Elsevier, vol. 173(C), pages 785-798.
    5. Sina Abbasi & Babek Erdebilli, 2023. "Green Closed-Loop Supply Chain Networks’ Response to Various Carbon Policies during COVID-19," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    6. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    7. Shi, Lingfeng & Tian, Hua & Shu, Gequn, 2020. "Multi-mode analysis of a CO2-based combined refrigeration and power cycle for engine waste heat recovery," Applied Energy, Elsevier, vol. 264(C).
    8. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    9. Yu, Mingzhe & Yang, Fubin & Zhang, Hongguang & Yan, Yinlian & Ping, Xu & Pan, Yachao & Xing, Chengda & Yang, Anren, 2024. "Thermoeconomic performance of supercritical carbon dioxide Brayton cycle systems for CNG engine waste heat recovery," Energy, Elsevier, vol. 289(C).
    10. Niu, Xiaojuan & Ma, Ning & Bu, Zhengkun & Hong, Wenpeng & Li, Haoran, 2022. "Thermodynamic analysis of supercritical Brayton cycles using CO2-based binary mixtures for solar power tower system application," Energy, Elsevier, vol. 254(PA).
    11. Wang, Chenfang & Liu, Shihao & Zhan, Shuming & Ou, Mengmeng & Wei, Jiangjun & Cheng, Xiaozhang & Zhuge, Weilin & Zhang, Yangjun, 2024. "Transcritical dual-loop Rankine cycle waste heat recovery system for China VI emission standards natural gas engine," Energy, Elsevier, vol. 292(C).
    12. Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
    13. Wang, Kun & Li, Ming-Jia & Guo, Jia-Qi & Li, Peiwen & Liu, Zhan-Bin, 2018. "A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants," Applied Energy, Elsevier, vol. 212(C), pages 109-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Sun, Yan & Li, Hong-Wei & Wang, Di & Du, Chang-He, 2024. "A novel zero carbon emission system based on the complementary utilization of solar energy and hydrogen," Applied Energy, Elsevier, vol. 356(C).
    3. Ma, Ning & Bu, Zhengkun & Fu, Yanan & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "An operation strategy and off-design performance for supercritical brayton cycle using CO2-propane mixture in a direct-heated solar power tower plant," Energy, Elsevier, vol. 278(PA).
    4. Tafur-Escanta, Paul & López-Paniagua, Ignacio & Muñoz-Antón, Javier, 2023. "Thermodynamics analysis of the supercritical CO2 binary mixtures for Brayton power cycles," Energy, Elsevier, vol. 270(C).
    5. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    6. Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
    7. Bian, Xingyan & Wang, Xuan & Wang, Jingyu & Wang, Rui & Zhang, Xuanang & Tian, Hua & Shu, Gequn, 2024. "Transcritical CO2 mixture power for nuclear plant application: Concept and thermodynamic optimization," Energy, Elsevier, vol. 309(C).
    8. Niu, Xiaojuan & Ma, Ning & Bu, Zhengkun & Hong, Wenpeng & Li, Haoran, 2022. "Thermodynamic analysis of supercritical Brayton cycles using CO2-based binary mixtures for solar power tower system application," Energy, Elsevier, vol. 254(PA).
    9. Guo, Jia-Qi & Li, Ming-Jia & He, Ya-Ling & Xu, Jin-Liang, 2019. "A study of new method and comprehensive evaluation on the improved performance of solar power tower plant with the CO2-based mixture cycles," Applied Energy, Elsevier, vol. 256(C).
    10. Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
    11. Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
    12. Guo, Jia-Qi & Li, Ming-Jia & Xu, Jin-Liang & Yan, Jun-Jie & Wang, Kun, 2019. "Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems," Energy, Elsevier, vol. 173(C), pages 785-798.
    13. Zhang, Fengtao & Zhang, Jianyuan & You, Jinggang & Yang, Liyong & Wang, Wei & Luo, Qing & Jiao, Ligang & Liu, Zhengang & Jin, Quan & Wang, Hao, 2024. "Construction of multi-loop thermodynamic cycles: Methodology and case study," Energy, Elsevier, vol. 288(C).
    14. Ma, Teng & Li, Ming-Jia & Xu, Jin-Liang & Cao, Feng, 2019. "Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1000 MW S-CO2 coal fired power plant," Energy, Elsevier, vol. 175(C), pages 123-138.
    15. Su, Zixiang & Yang, Liu & Wang, Hao & Song, Jianzhong & Jiang, Weixue, 2024. "Exergoenvironmental optimization and thermoeconomic assessment of an innovative multistage Brayton cycle with dual expansion and cooling for ultra-high temperature solar power," Energy, Elsevier, vol. 286(C).
    16. Zhao, Dongpeng & Han, Changho & Cho, Wonhee & Zhao, Li & Kim, Yongchan, 2022. "Directly combining a power cycle and refrigeration cycle: Method and case study," Energy, Elsevier, vol. 259(C).
    17. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    18. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    19. Paul Tafur-Escanta & Robert Valencia-Chapi & Ignacio López-Paniagua & Luis Coco-Enríquez & Javier Muñoz-Antón, 2021. "Supercritical CO 2 Binary Mixtures for Recompression Brayton s-CO 2 Power Cycles Coupled to Solar Thermal Energy Plants," Energies, MDPI, vol. 14(13), pages 1-27, July.
    20. Ma, Wenkui & Ye, Ping & Gao, Yue & Hao, Yadong & Yang, Xiaoyong, 2024. "Optimization of thermodynamic performance and mass evaluation for MW-class space nuclear reactor coupled with noble gas binary mixtures Brayton cycle," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.