IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2459-d357660.html
   My bibliography  Save this article

The Role of Powertrain Electrification in Achieving Deep Decarbonization in Road Freight Transport

Author

Listed:
  • Juan C. González Palencia

    (Division of Mechanical Science and Technology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjincho, Kiryu, Gunma 376-8515, Japan)

  • Van Tuan Nguyen

    (Division of Mechanical Science and Technology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjincho, Kiryu, Gunma 376-8515, Japan)

  • Mikiya Araki

    (Division of Mechanical Science and Technology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjincho, Kiryu, Gunma 376-8515, Japan)

  • Seiichi Shiga

    (Division of Mechanical Science and Technology, Graduate School of Science and Technology, Gunma University, 29-1 Honcho, Ota, Gunma 373-0057, Japan)

Abstract

Decarbonizing road freight transport is difficult due to its reliance on fossil fuel internal combustion engine vehicles (ICEVs). The role of powertrain electrification in achieving deep decarbonization in road freight transport was studied using a vehicle stock turnover model, focusing on Japan. Twelve vehicle types were considered; combining four powertrains, ICEV, hybrid electric vehicle (HEV), battery electric vehicle (BEV) and fuel cell electric vehicle (FCEV); and three vehicle size classes, normal, compact and mini-sized vehicles. A scenario-based approach was used; considering a Base scenario, and three alternative scenarios targeting powertrain electrification. Between 2012 and 2050, tank to wheel CO 2 emissions decrease 42.8% in the Base scenario, due to the reduction of vehicle stock, the improvement of vehicle fuel consumption and the adoption of HEVs. Diffusion of FCEVs in normal vehicles and BEVs in compact and mini-sized vehicles achieves the largest tank to wheel CO 2 emissions reductions, up to 44.6% compared with the 2050 baseline value. The net cash flow is positive over the whole time horizon, peaking at 6.7 billion USD/year in 2049 and reaching 6.6 billion USD/year by 2050. Powertrain electrification is not enough to achieve any of the CO 2 emissions reduction targets in road freight transport.

Suggested Citation

  • Juan C. González Palencia & Van Tuan Nguyen & Mikiya Araki & Seiichi Shiga, 2020. "The Role of Powertrain Electrification in Achieving Deep Decarbonization in Road Freight Transport," Energies, MDPI, vol. 13(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2459-:d:357660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2459/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2459/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N/A, 2006. "The World Economy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 195(1), pages 9-33, January.
    2. Wikström, Martina & Hansson, Lisa & Alvfors, Per, 2014. "Socio-technical experiences from electric vehicle utilisation in commercial fleets," Applied Energy, Elsevier, vol. 123(C), pages 82-93.
    3. González Palencia, Juan C. & Sakamaki, Tsukasa & Araki, Mikiya & Shiga, Seiichi, 2015. "Impact of powertrain electrification, vehicle size reduction and lightweight materials substitution on energy use, CO2 emissions and cost of a passenger light-duty vehicle fleet," Energy, Elsevier, vol. 93(P2), pages 1489-1504.
    4. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2012. "Fuel consumption and life cycle GHG emissions by China’s on-road trucks: Future trends through 2050 and evaluation of mitigation measures," Energy Policy, Elsevier, vol. 43(C), pages 244-251.
    5. Kast, James & Morrison, Geoffrey & Gangloff, John J. & Vijayagopal, Ram & Marcinkoski, Jason, 2018. "Designing hydrogen fuel cell electric trucks in a diverse medium and heavy duty market," Research in Transportation Economics, Elsevier, vol. 70(C), pages 139-147.
    6. Talebian, Hoda & Herrera, Omar E. & Tran, Martino & Mérida, Walter, 2018. "Electrification of road freight transport: Policy implications in British Columbia," Energy Policy, Elsevier, vol. 115(C), pages 109-118.
    7. Askin, Amanda C. & Barter, Garrett E. & West, Todd H. & Manley, Dawn K., 2015. "The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs," Energy Policy, Elsevier, vol. 81(C), pages 1-13.
    8. N/A, 2006. "The World Economy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 196(1), pages 10-35, April.
    9. Vora, Ashish P. & Jin, Xing & Hoshing, Vaidehi & Saha, Tridib & Shaver, Gregory & Varigonda, Subbarao & Wasynczuk, Oleg & Tyner, Wallace E., 2017. "Design-space exploration of series plug-in hybrid electric vehicles for medium-duty truck applications in a total cost-of-ownership framework," Applied Energy, Elsevier, vol. 202(C), pages 662-672.
    10. Christensen, Linda & Klauenberg, Jens & Kveiborg, Ole & Rudolph, Christian, 2017. "Suitability of commercial transport for a shift to electric mobility with Denmark and Germany as use cases," Research in Transportation Economics, Elsevier, vol. 64(C), pages 48-60.
    11. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    12. Oshiro, Ken & Masui, Toshihiko, 2015. "Diffusion of low emission vehicles and their impact on CO2 emission reduction in Japan," Energy Policy, Elsevier, vol. 81(C), pages 215-225.
    13. Mulholland, Eamonn & Teter, Jacob & Cazzola, Pierpaolo & McDonald, Zane & Ó Gallachóir, Brian P., 2018. "The long haul towards decarbonising road freight – A global assessment to 2050," Applied Energy, Elsevier, vol. 216(C), pages 678-693.
    14. Li, Weiqi & Dai, Yaping & Ma, Linwei & Hao, Han & Lu, Haiyan & Albinson, Rosemary & Li, Zheng, 2015. "Oil-saving pathways until 2030 for road freight transportation in China based on a cost-optimization model," Energy, Elsevier, vol. 86(C), pages 369-384.
    15. Davis, Brian A. & Figliozzi, Miguel A., 2013. "A methodology to evaluate the competitiveness of electric delivery trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 8-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Cieslik & Filip Szwajca & Jedrzej Zawartowski & Katarzyna Pietrzak & Slawomir Rosolski & Kamil Szkarlat & Michal Rutkowski, 2021. "Capabilities of Nearly Zero Energy Building (nZEB) Electricity Generation to Charge Electric Vehicle (EV) Operating in Real Driving Conditions (RDC)," Energies, MDPI, vol. 14(22), pages 1-22, November.
    2. Jahangir Samet, Mehdi & Liimatainen, Heikki & Pihlatie, Mikko & van Vliet, Oscar Patrick René, 2024. "Levelized cost of driving for medium and heavy-duty battery electric trucks," Applied Energy, Elsevier, vol. 361(C).
    3. Mohammed Yousri Silaa & Mohamed Derbeli & Oscar Barambones & Ali Cheknane, 2020. "Design and Implementation of High Order Sliding Mode Control for PEMFC Power System," Energies, MDPI, vol. 13(17), pages 1-15, August.
    4. Mohsen Kandidayeni & Alvaro Macias & Loïc Boulon & João Pedro F. Trovão, 2020. "Online Modeling of a Fuel Cell System for an Energy Management Strategy Design," Energies, MDPI, vol. 13(14), pages 1-17, July.
    5. Mehdi Jahangir Samet & Heikki Liimatainen & Oscar Patrick René van Vliet & Markus Pöllänen, 2021. "Road Freight Transport Electrification Potential by Using Battery Electric Trucks in Finland and Switzerland," Energies, MDPI, vol. 14(4), pages 1-22, February.
    6. Jacek Pielecha & Kinga Skobiej & Przemyslaw Kubiak & Marek Wozniak & Krzysztof Siczek, 2022. "Exhaust Emissions from Plug-in and HEV Vehicles in Type-Approval Tests and Real Driving Cycles," Energies, MDPI, vol. 15(7), pages 1-38, March.
    7. Jamila Hemdani & Laid Degaa & Moez Soltani & Nassim Rizoug & Achraf Jabeur Telmoudi & Abdelkader Chaari, 2022. "Battery Lifetime Prediction via Neural Networks with Discharge Capacity and State of Health," Energies, MDPI, vol. 15(22), pages 1-17, November.
    8. Piotr Bielaczyc & Rafal Sala & Tomasz Meinicke, 2021. "Analysis of Technical Capabilities, Methodology and Test Results of a Light-Commercial Vehicle Conversion to Battery Electric Powertrain," Energies, MDPI, vol. 14(4), pages 1-18, February.
    9. Romano Alberto Acri & Silvia Barone & Paolo Cambula & Valter Cecchini & Maria Carmen Falvo & Jacopo Lepore & Matteo Manganelli & Federico Santi, 2021. "Forecast of the Demand for Electric Mobility for Rome–Fiumicino International Airport," Energies, MDPI, vol. 14(17), pages 1-19, August.
    10. Giuseppe De Lorenzo & Francesco Piraino & Francesco Longo & Giovanni Tinè & Valeria Boscaino & Nicola Panzavecchia & Massimo Caccia & Petronilla Fragiacomo, 2022. "Modelling and Performance Analysis of an Autonomous Marine Vehicle Powered by a Fuel Cell Hybrid Powertrain," Energies, MDPI, vol. 15(19), pages 1-21, September.
    11. Marisol Garrouste & Michael T. Craig & Daniel Wendt & Maria Herrera Diaz & William Jenson & Qian Zhang & Brendan Kochunas, 2023. "Techno-Economic Analysis of Synthetic Fuel Production from Existing Nuclear Power Plants across the United States," Papers 2309.12085, arXiv.org.
    12. Yang Yang & Jinlong Cui & Xin Cui, 2020. "Design and Analysis of Magnetic Coils for Optimizing the Coupling Coefficient in an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(16), pages 1-15, August.
    13. Tino Vidović & Ivan Tolj & Gojmir Radica & Natalia Bodrožić Ćoko, 2022. "Proton-Exchange Membrane Fuel Cell Balance of Plant and Performance Simulation for Vehicle Applications," Energies, MDPI, vol. 15(21), pages 1-14, October.
    14. Wojciech Cieslik & Filip Szwajca & Wojciech Golimowski & Andrew Berger, 2021. "Experimental Analysis of Residential Photovoltaic (PV) and Electric Vehicle (EV) Systems in Terms of Annual Energy Utilization," Energies, MDPI, vol. 14(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Jahangir Samet & Heikki Liimatainen & Oscar Patrick René van Vliet & Markus Pöllänen, 2021. "Road Freight Transport Electrification Potential by Using Battery Electric Trucks in Finland and Switzerland," Energies, MDPI, vol. 14(4), pages 1-22, February.
    2. Flávia Mendes de Almeida Collaço & Ana Carolina Rodrigues Teixeira & Pedro Gerber Machado & Raquel Rocha Borges & Thiago Luis Felipe Brito & Dominique Mouette, 2022. "Road Freight Transport Literature and the Achievements of the Sustainable Development Goals—A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    3. Liimatainen, Heikki & van Vliet, Oscar & Aplyn, David, 2019. "The potential of electric trucks – An international commodity-level analysis," Applied Energy, Elsevier, vol. 236(C), pages 804-814.
    4. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    5. Lüger, Tim, 2018. "A VAR evaluation of classical growth theory," Darmstadt Discussion Papers in Economics 231, Darmstadt University of Technology, Department of Law and Economics.
    6. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    7. Andrew T. Young, 2017. "How the City Air Made Us Free: The Self-Governing Medieval City and the Bourgeois Revaluation," Journal of Private Enterprise, The Association of Private Enterprise Education, vol. 32(Winter 20), pages 31-47.
    8. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    9. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    10. Magdalena Mucowska, 2021. "Trends of Environmentally Sustainable Solutions of Urban Last-Mile Deliveries on the E-Commerce Market—A Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    11. Joanna Ligenzowska, 2016. "Regional Innovation Systems in Sweden," International Economics, University of Lodz, Faculty of Economics and Sociology, issue 16, pages 388-405, December.
    12. Madsen, Jakob B. & Raschky, Paul A. & Skali, Ahmed, 2015. "Does democracy drive income in the world, 1500–2000?," European Economic Review, Elsevier, vol. 78(C), pages 175-195.
    13. Ron W. NIELSEN, 2017. "Demographic Catastrophes Did Not Shape the Growth of Human Population or the Economic Growth," Journal of Economic and Social Thought, KSP Journals, vol. 4(2), pages 121-141, June.
    14. Marelli, Silvia & Capobianco, Massimo, 2011. "Steady and pulsating flow efficiency of a waste-gated turbocharger radial flow turbine for automotive application," Energy, Elsevier, vol. 36(1), pages 459-465.
    15. Anchorena, José & Ronconi, Lucas, 2012. "Entrepreneurship, Entrepreneurial Values, and Public Policy in Argentina," IDB Publications (Working Papers) 4054, Inter-American Development Bank.
    16. Florian Brugger, 2016. "Asias Reserve Accumulation: Part of a New Paradigm," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(8), pages 457-476, August.
    17. Ricardo Bustillo & Andoni Maiza, 2012. "An analysis of the economic integration of China and the European Union: the role of European trade policy," Asia Pacific Business Review, Taylor & Francis Journals, vol. 18(3), pages 355-372, July.
    18. Pedro G. Machado & Ana C. R. Teixeira & Flavia M. A. Collaço & Dominique Mouette, 2021. "Review of life cycle greenhouse gases, air pollutant emissions and costs of road medium and heavy‐duty trucks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    19. Contestabile, Marcello & Alajaji, Mohammed & Almubarak, Bader, 2017. "Will current electric vehicle policy lead to cost-effective electrification of passenger car transport?," Energy Policy, Elsevier, vol. 110(C), pages 20-30.
    20. Hsiang-Chih Hwang & Jesús Seade, 2013. "Economic Determinants of Inter- and Intra-FDI in East Asia," China Economic Policy Review (CEPR), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2459-:d:357660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.