IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4234-d284213.html
   My bibliography  Save this article

Probabilistic Load Flow Algorithm of Distribution Networks with Distributed Generators and Electric Vehicles Integration

Author

Listed:
  • Bowen Zhou

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Xiao Yang

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Dongsheng Yang

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Zhile Yang

    (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

  • Tim Littler

    (School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast BT9 5AH, UK)

  • Hua Li

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

Abstract

Probabilistic Load Flow (PLF) calculations are important tools for analysis of the steady-state operation of electrical energy networks, especially for electrical energy distribution networks with large-scale distributed generators (DGs) and electric vehicle (EV) integration. Traditional PLF has used the Cumulant Method (CM) and Latin Hypercube Sampling (LHS) method. However, traditional CM requires that each input variable be independent of one another, and the Cholesky decomposition adopted by the traditional LHS has limitations in that it is only applicable for positive definite matrices. To solve these problems, taking into account the Q-MCS theory of LHS, this paper proposes a CM PLF algorithm based on improved LHS (ILHS-CM). The cumulants of the input variables are obtained based on sampling results. The probability distribution of the output variables is obtained according to the Gram-Charlier series expansion. Moreover, DGs, such as wind turbines, photovoltaic (PV) arrays, and EVs integrated into the electrical energy distribution networks are comprehensively considered, including correlation analysis and dynamic load flow analysis for EV-coordinated charging. Four scenarios are analyzed based on the IEEE-30 node network, including with/without DGs and EVs, error analysis and performance evaluation of the proposed algorithm, correlation analysis of DGs and EVs, and dynamic load flow analysis with EV integration. The results presented in this paper demonstrate the effectiveness, accuracy, and practicability of the proposed algorithm.

Suggested Citation

  • Bowen Zhou & Xiao Yang & Dongsheng Yang & Zhile Yang & Tim Littler & Hua Li, 2019. "Probabilistic Load Flow Algorithm of Distribution Networks with Distributed Generators and Electric Vehicles Integration," Energies, MDPI, vol. 12(22), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4234-:d:284213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lun Yang & Xia Zhao & Xinyi Li & Wei Yan, 2018. "Probabilistic Steady-State Operation and Interaction Analysis of Integrated Electricity, Gas and Heating Systems," Energies, MDPI, vol. 11(4), pages 1-21, April.
    2. Zhang, Hongxuan & Lu, Zongxiang & Hu, Wei & Wang, Yiting & Dong, Ling & Zhang, Jietan, 2019. "Coordinated optimal operation of hydro–wind–solar integrated systems," Applied Energy, Elsevier, vol. 242(C), pages 883-896.
    3. Xuexia Zhang & Zhiqi Guo & Weirong Chen, 2017. "Probabilistic Power Flow Method Considering Continuous and Discrete Variables," Energies, MDPI, vol. 10(5), pages 1-17, April.
    4. Zhou, Bowen & Littler, Tim & Meegahapola, Lasantha & Zhang, Huaguang, 2016. "Power system steady-state analysis with large-scale electric vehicle integration," Energy, Elsevier, vol. 115(P1), pages 289-302.
    5. Carpinelli, Guido & Caramia, Pierluigi & Varilone, Pietro, 2015. "Multi-linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems," Renewable Energy, Elsevier, vol. 76(C), pages 283-295.
    6. Pei Bie & Buhan Zhang & Hang Li & Yong Wang & Le Luan & Guoyan Chen & Guojun Lu, 2017. "Chance-Constrained Real-Time Dispatch with Renewable Uncertainty Based on Dynamic Load Flow," Energies, MDPI, vol. 10(12), pages 1-20, December.
    7. Stavros Lazarou & Vasiliki Vita & Lambros Ekonomou, 2018. "Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-17, November.
    8. Habib, Arslan & Sou, Chan & Hafeez, Hafiz Muhammad & Arshad, Adeel, 2018. "Evaluation of the effect of high penetration of renewable energy sources (RES) on system frequency regulation using stochastic risk assessment technique (an approach based on improved cumulant)," Renewable Energy, Elsevier, vol. 127(C), pages 204-212.
    9. Stavros Lazarou & Vasiliki Vita & Christos Christodoulou & Lambros Ekonomou, 2018. "Calculating Operational Patterns for Electric Vehicle Charging on a Real Distribution Network Based on Renewables’ Production," Energies, MDPI, vol. 11(9), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joao Soares & Bruno Canizes & Zita Vale, 2021. "Rethinking the Distribution Power Network Planning and Operation for a Sustainable Smart Grid and Smooth Interaction with Electrified Transportation," Energies, MDPI, vol. 14(23), pages 1-4, November.
    2. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgios Fotis & Christos Dikeakos & Elias Zafeiropoulos & Stylianos Pappas & Vasiliki Vita, 2022. "Scalability and Replicability for Smart Grid Innovation Projects and the Improvement of Renewable Energy Sources Exploitation: The FLEXITRANSTORE Case," Energies, MDPI, vol. 15(13), pages 1-32, June.
    2. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2021. "Impacts of regional industrial electricity savings on the development of future coal capacity per electricity grid and related air pollution emissions – A case study for China," Applied Energy, Elsevier, vol. 282(PB).
    3. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.
    4. Segantin, Stefano & Testoni, Raffaella & Zucchetti, Massimo, 2019. "The lifetime determination of ARC reactor as a load-following plant in the energy framework," Energy Policy, Elsevier, vol. 126(C), pages 66-75.
    5. Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
    6. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    7. Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
    8. Guoqiang Sun & Wenxue Wang & Yi Wu & Wei Hu & Zijun Yang & Zhinong Wei & Haixiang Zang & Sheng Chen, 2019. "A Nonlinear Analytical Algorithm for Predicting the Probabilistic Mass Flow of a Radial District Heating Network," Energies, MDPI, vol. 12(7), pages 1-20, March.
    9. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Nunes, Pedro & Brito, M.C., 2017. "Displacing natural gas with electric vehicles for grid stabilization," Energy, Elsevier, vol. 141(C), pages 87-96.
    11. Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
    12. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).
    13. Abdulrahman Almazroui & Salman Mohagheghi, 2022. "Coordinated Control of Electric Vehicles and PV Resources in an Unbalanced Power Distribution System," Energies, MDPI, vol. 15(24), pages 1-17, December.
    14. Nimalsiri, Nanduni I. & Ratnam, Elizabeth L. & Mediwaththe, Chathurika P. & Smith, David B. & Halgamuge, Saman K., 2021. "Coordinated charging and discharging control of electric vehicles to manage supply voltages in distribution networks: Assessing the customer benefit," Applied Energy, Elsevier, vol. 291(C).
    15. González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
    16. Colmenar-Santos, A. & de Palacio-Rodriguez, Carlos & Rosales-Asensio, Enrique & Borge-Diez, David, 2017. "Estimating the benefits of vehicle-to-home in islands: The case of the Canary Islands," Energy, Elsevier, vol. 134(C), pages 311-322.
    17. Francisco J. Ruiz-Rodríguez & Jesús C. Hernández & Francisco Jurado, 2017. "Probabilistic Load-Flow Analysis of Biomass-Fuelled Gas Engines with Electrical Vehicles in Distribution Systems," Energies, MDPI, vol. 10(10), pages 1-23, October.
    18. Yuan, Wenlin & Wang, Xinqi & Su, Chengguo & Cheng, Chuntian & Liu, Zhe & Wu, Zening, 2021. "Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming," Energy, Elsevier, vol. 222(C).
    19. Arthur K. Barnes & Jose E. Tabarez & Adam Mate & Russell W. Bent, 2021. "Optimization-Based Formulations for Short-Circuit Studies with Inverter-Interfaced Generation in PowerModelsProtection.jl," Energies, MDPI, vol. 14(8), pages 1-27, April.
    20. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4234-:d:284213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.