IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v76y2015icp283-295.html
   My bibliography  Save this article

Multi-linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems

Author

Listed:
  • Carpinelli, Guido
  • Caramia, Pierluigi
  • Varilone, Pietro

Abstract

In this paper, a probabilistic method is proposed to analyze the steady-state operating conditions of an active electrical distribution system with Wind (WD) and Photovoltaic (PV) generation plants. This method takes into account the uncertainties of power load demands and power production from renewable generation systems and combines Monte Carlo simulation techniques and multi-linearized power flow equations. The power flow equations include models of wind turbine and PV generation units and multi-linearization is accomplished by applying a criterion based on the total active power of the system. The method properly extends a probabilistic method proposed in the relevant literature for traditional passive electrical distribution systems to the field of an active electrical distribution system with WD and PV generation units. Numerical applications are presented and discussed with reference to a 17-bus test distribution system characterized by WD and PV systems connected at different busbars. The results obtained with the proposed algorithm are compared with the results obtained using a Monte Carlo simulation algorithm that included non-linear power flow equations.

Suggested Citation

  • Carpinelli, Guido & Caramia, Pierluigi & Varilone, Pietro, 2015. "Multi-linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems," Renewable Energy, Elsevier, vol. 76(C), pages 283-295.
  • Handle: RePEc:eee:renene:v:76:y:2015:i:c:p:283-295
    DOI: 10.1016/j.renene.2014.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114007435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.11.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdullah, M.A. & Agalgaonkar, A.P. & Muttaqi, K.M., 2013. "Probabilistic load flow incorporating correlation between time-varying electricity demand and renewable power generation," Renewable Energy, Elsevier, vol. 55(C), pages 532-543.
    2. Segura-Heras, Isidoro & Escrivá-Escrivá, Guillermo & Alcázar-Ortega, Manuel, 2011. "Wind farm electrical power production model for load flow analysis," Renewable Energy, Elsevier, vol. 36(3), pages 1008-1013.
    3. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Ky Huynh & Van Duong Ngo & Dinh Duong Le & Nhi Thi Ai Nguyen, 2018. "Probabilistic Power Flow Methodology for Large-Scale Power Systems Incorporating Renewable Energy Sources," Energies, MDPI, vol. 11(10), pages 1-12, October.
    2. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.
    3. Bowen Zhou & Xiao Yang & Dongsheng Yang & Zhile Yang & Tim Littler & Hua Li, 2019. "Probabilistic Load Flow Algorithm of Distribution Networks with Distributed Generators and Electric Vehicles Integration," Energies, MDPI, vol. 12(22), pages 1-24, November.
    4. Segantin, Stefano & Testoni, Raffaella & Zucchetti, Massimo, 2019. "The lifetime determination of ARC reactor as a load-following plant in the energy framework," Energy Policy, Elsevier, vol. 126(C), pages 66-75.
    5. Sun, Xiaocong & Bao, Minglei & Ding, Yi & Hui, Hengyu & Song, Yonghua & Zheng, Chenghang & Gao, Xiang, 2024. "Modeling and evaluation of probabilistic carbon emission flow for power systems considering load and renewable energy uncertainties," Energy, Elsevier, vol. 296(C).
    6. Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
    7. Barukčić, M. & Hederić, Ž. & Hadžiselimović, M. & Seme, S., 2018. "A simple stochastic method for modelling the uncertainty of photovoltaic power production based on measured data," Energy, Elsevier, vol. 165(PB), pages 246-256.
    8. Le, D.D. & Berizzi, A. & Bovo, C., 2016. "A probabilistic security assessment approach to power systems with integrated wind resources," Renewable Energy, Elsevier, vol. 85(C), pages 114-123.
    9. Zain Anwer Memon & Riccardo Trinchero & Paolo Manfredi & Flavio Canavero & Igor S. Stievano, 2020. "Compressed Machine Learning Models for the Uncertainty Quantification of Power Distribution Networks," Energies, MDPI, vol. 13(18), pages 1-18, September.
    10. Abedini, Mohammad & Moradi, Mohammad H. & Hosseinian, S. Mahdi, 2016. "Optimal management of microgrids including renewable energy scources using GPSO-GM algorithm," Renewable Energy, Elsevier, vol. 90(C), pages 430-439.
    11. Shargh, S. & Khorshid ghazani, B. & Mohammadi-ivatloo, B. & Seyedi, H. & Abapour, M., 2016. "Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties," Renewable Energy, Elsevier, vol. 94(C), pages 10-21.
    12. González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
    13. Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
    14. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    15. Prusty, B. Rajanarayan & Jena, Debashisha, 2018. "An over-limit risk assessment of PV integrated power system using probabilistic load flow based on multi-time instant uncertainty modeling," Renewable Energy, Elsevier, vol. 116(PA), pages 367-383.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shargh, S. & Khorshid ghazani, B. & Mohammadi-ivatloo, B. & Seyedi, H. & Abapour, M., 2016. "Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties," Renewable Energy, Elsevier, vol. 94(C), pages 10-21.
    2. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    4. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    5. Tang, Jie & Brouste, Alexandre & Tsui, Kwok Leung, 2015. "Some improvements of wind speed Markov chain modeling," Renewable Energy, Elsevier, vol. 81(C), pages 52-56.
    6. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.
    7. Aruna Kanagaraj & Kumudini Devi Raguru Pandu, 2020. "Investigations of Various Market Models in a Deregulated Power Environment Using ACOPF," Energies, MDPI, vol. 13(9), pages 1-17, May.
    8. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Integrated prosumers–DSO approach applied in peer-to-peer energy and reserve tradings considering network constraints," Applied Energy, Elsevier, vol. 317(C).
    9. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.
    11. Rodriguez-Hernandez, O. & Jaramillo, O.A. & Andaverde, J.A. & del Río, J.A., 2013. "Analysis about sampling, uncertainties and selection of a reliable probabilistic model of wind speed data used on resource assessment," Renewable Energy, Elsevier, vol. 50(C), pages 244-252.
    12. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    13. Mostafaeipour, Ali, 2010. "Productivity and development issues of global wind turbine industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1048-1058, April.
    14. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    15. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    16. Muhammad Fitra Zambak & Catra Indra Cahyadi & Jufri Helmi & Tengku Machdhalie Sofie & Suwarno Suwarno, 2023. "Evaluation and Analysis of Wind Speed with the Weibull and Rayleigh Distribution Models for Energy Potential Using Three Models," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 427-432, March.
    17. Höltinger, Stefan & Salak, Boris & Schauppenlehner, Thomas & Scherhaufer, Patrick & Schmidt, Johannes, 2016. "Austria's wind energy potential – A participatory modeling approach to assess socio-political and market acceptance," Energy Policy, Elsevier, vol. 98(C), pages 49-61.
    18. Shen, Xin & Chen, Jin-Ge & Zhu, Xiao-Cheng & Liu, Peng-Yin & Du, Zhao-Hui, 2015. "Multi-objective optimization of wind turbine blades using lifting surface method," Energy, Elsevier, vol. 90(P1), pages 1111-1121.
    19. Wang, Tian & Deng, Shiming, 2019. "Multi-Period energy procurement policies for smart-grid communities with deferrable demand and supplementary uncertain power supplies," Omega, Elsevier, vol. 89(C), pages 212-226.
    20. Daniel Villanueva & Andrés Feijóo & José L. Pazos, 2013. "Multivariate Weibull Distribution for Wind Speed and Wind Power Behavior Assessment," Resources, MDPI, vol. 2(3), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:76:y:2015:i:c:p:283-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.