IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp316-332.html
   My bibliography  Save this article

Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems

Author

Listed:
  • Hernández, J.C.
  • Ruiz-Rodriguez, F.J.
  • Jurado, F.

Abstract

Photovoltaics (PVs) provide new opportunities for radial distribution systems (RDSs) that feed electric vehicle charging stations (EVCSs). However, the accurate assessment of the combined technical impact is problematic because of the uncertainties of sources/loads. In previous research, we developed a technique to assess the impact of PV generation. This new study presents a general analytical technique (GAT) that evaluates the combined impact for an extended time frame. Specifically, the GAT effectively assesses the fulfilment of technical requirements for weekly RDS operating variables as specified in regulations. As our main objective is to improve the assessment accuracy of the EV and PV interaction in RDSs, the weekly assessment was extended to a one-year time period, during which it is possible to capture the total uncertainty. Also, correlation of input variables is handled.

Suggested Citation

  • Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:316-332
    DOI: 10.1016/j.energy.2017.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217315463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
    2. Hernández, J.C. & Medina, A. & Jurado, F., 2007. "Optimal allocation and sizing for profitability and voltage enhancement of PV systems on feeders," Renewable Energy, Elsevier, vol. 32(10), pages 1768-1789.
    3. Munkhammar, Joakim & Widén, Joakim & Rydén, Jesper, 2015. "On a probability distribution model combining household power consumption, electric vehicle home-charging and photovoltaic power production," Applied Energy, Elsevier, vol. 142(C), pages 135-143.
    4. Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
    5. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Moradi-Dalvand, Mohammad & Zare, Kazem, 2017. "Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets," Energy, Elsevier, vol. 118(C), pages 1168-1179.
    6. Ahmadian, Ali & Sedghi, Mahdi & Aliakbar-Golkar, Masoud & Elkamel, Ali & Fowler, Michael, 2016. "Optimal probabilistic based storage planning in tap-changer equipped distribution network including PEVs, capacitor banks and WDGs: A case study for Iran," Energy, Elsevier, vol. 112(C), pages 984-997.
    7. Kavousi-Fard, Abdollah & Khodaei, Amin, 2016. "Efficient integration of plug-in electric vehicles via reconfigurable microgrids," Energy, Elsevier, vol. 111(C), pages 653-663.
    8. Nunes, Pedro & Farias, Tiago & Brito, Miguel C., 2015. "Enabling solar electricity with electric vehicles smart charging," Energy, Elsevier, vol. 87(C), pages 10-20.
    9. Zhou, Bowen & Littler, Tim & Meegahapola, Lasantha & Zhang, Huaguang, 2016. "Power system steady-state analysis with large-scale electric vehicle integration," Energy, Elsevier, vol. 115(P1), pages 289-302.
    10. Kaur, Amanpreet & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Net load forecasting for high renewable energy penetration grids," Energy, Elsevier, vol. 114(C), pages 1073-1084.
    11. Eduardo Valsera-Naranjo & Andreas Sumper & Roberto Villafafila-Robles & David Martínez-Vicente, 2012. "Probabilistic Method to Assess the Impact of Charging of Electric Vehicles on Distribution Grids," Energies, MDPI, vol. 5(5), pages 1-29, May.
    12. Carrión, Miguel & Zárate-Miñano, Rafael, 2015. "Operation of renewable-dominated power systems with a significant penetration of plug-in electric vehicles," Energy, Elsevier, vol. 90(P1), pages 827-835.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco J. Ruiz-Rodríguez & Jesús C. Hernández & Francisco Jurado, 2017. "Probabilistic Load-Flow Analysis of Biomass-Fuelled Gas Engines with Electrical Vehicles in Distribution Systems," Energies, MDPI, vol. 10(10), pages 1-23, October.
    2. Lin, Haiyang & Fu, Kun & Wang, Yu & Sun, Qie & Li, Hailong & Hu, Yukun & Sun, Bo & Wennersten, Ronald, 2019. "Characteristics of electric vehicle charging demand at multiple types of location - Application of an agent-based trip chain model," Energy, Elsevier, vol. 188(C).
    3. Shi, Jiaqi & Liu, Nian & Huang, Yujing & Ma, Liya, 2022. "An Edge Computing-oriented Net Power Forecasting for PV-assisted Charging Station: Model Complexity and Forecasting Accuracy Trade-off," Applied Energy, Elsevier, vol. 310(C).
    4. Nunes, Pedro & Brito, M.C., 2017. "Displacing natural gas with electric vehicles for grid stabilization," Energy, Elsevier, vol. 141(C), pages 87-96.
    5. Ahmadian, Ali & Sedghi, Mahdi & Fgaier, Hedia & Mohammadi-ivatloo, Behnam & Golkar, Masoud Aliakbar & Elkamel, Ali, 2019. "PEVs data mining based on factor analysis method for energy storage and DG planning in active distribution network: Introducing S2S effect," Energy, Elsevier, vol. 175(C), pages 265-277.
    6. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    7. Hu, Jiaxiang & Hu, Weihao & Cao, Di & Sun, Xinwu & Chen, Jianjun & Huang, Yuehui & Chen, Zhe & Blaabjerg, Frede, 2024. "Probabilistic net load forecasting based on transformer network and Gaussian process-enabled residual modeling learning method," Renewable Energy, Elsevier, vol. 225(C).
    8. Aziz, Muhammad & Oda, Takuya & Ito, Masakazu, 2016. "Battery-assisted charging system for simultaneous charging of electric vehicles," Energy, Elsevier, vol. 100(C), pages 82-90.
    9. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    10. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    11. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    12. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
    13. Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
    14. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).
    15. José M. Cansino & Antonio Sánchez-Braza & Teresa Sanz-Díaz, 2018. "Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
    16. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    17. Dini, Anoosh & Hassankashi, Alireza & Pirouzi, Sasan & Lehtonen, Matti & Arandian, Behdad & Baziar, Ali Asghar, 2022. "A flexible-reliable operation optimization model of the networked energy hubs with distributed generations, energy storage systems and demand response," Energy, Elsevier, vol. 239(PA).
    18. Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
    19. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    20. Leonard Burg & Gonca Gürses-Tran & Reinhard Madlener & Antonello Monti, 2021. "Comparative Analysis of Load Forecasting Models for Varying Time Horizons and Load Aggregation Levels," Energies, MDPI, vol. 14(21), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:316-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.