A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2016.12.044
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Abdullah, M.A. & Agalgaonkar, A.P. & Muttaqi, K.M., 2013. "Probabilistic load flow incorporating correlation between time-varying electricity demand and renewable power generation," Renewable Energy, Elsevier, vol. 55(C), pages 532-543.
- Peter W. Glynn & Donald L. Iglehart, 1989. "Importance Sampling for Stochastic Simulations," Management Science, INFORMS, vol. 35(11), pages 1367-1392, November.
- Carpinelli, Guido & Caramia, Pierluigi & Varilone, Pietro, 2015. "Multi-linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems," Renewable Energy, Elsevier, vol. 76(C), pages 283-295.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dichen Liu & Chenxu Wang & Fei Tang & Yixi Zhou, 2020. "Probabilistic Assessment of Hybrid Wind-PV Hosting Capacity in Distribution Systems," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
- Hang Li & Zhe Zhang & Xianggen Yin, 2020. "A Novel Probabilistic Power Flow Algorithm Based on Principal Component Analysis and High-Dimensional Model Representation Techniques," Energies, MDPI, vol. 13(14), pages 1-14, July.
- Sui Peng & Huixiang Chen & Yong Lin & Tong Shu & Xingyu Lin & Junjie Tang & Wenyuan Li & Weijie Wu, 2019. "Probabilistic Power Flow for Hybrid AC/DC Grids with Ninth-Order Polynomial Normal Transformation and Inherited Latin Hypercube Sampling," Energies, MDPI, vol. 12(16), pages 1-21, August.
- HyungSeon Oh, 2019. "A Unified and Efficient Approach to Power Flow Analysis," Energies, MDPI, vol. 12(12), pages 1-20, June.
- Filip Mišurović & Saša Mujović, 2022. "Numerical Probabilistic Load Flow Analysis in Modern Power Systems with Intermittent Energy Sources," Energies, MDPI, vol. 15(6), pages 1-20, March.
- Harshavardhan Palahalli & Paolo Maffezzoni & Giambattista Gruosso, 2021. "Gaussian Copula Methodology to Model Photovoltaic Generation Uncertainty Correlation in Power Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-16, April.
- Prusty, B. Rajanarayan & Jena, Debashisha, 2018. "An over-limit risk assessment of PV integrated power system using probabilistic load flow based on multi-time instant uncertainty modeling," Renewable Energy, Elsevier, vol. 116(PA), pages 367-383.
- Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Hasan, Kazi Nazmul & Preece, Robin & Milanović, Jovica V., 2019. "Existing approaches and trends in uncertainty modelling and probabilistic stability analysis of power systems with renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 168-180.
- Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
- Mohamed A. M. Shaheen & Hany M. Hasanien & Said F. Mekhamer & Mohammed H. Qais & Saad Alghuwainem & Zia Ullah & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Probabilistic Optimal Power Flow Solution Using a Novel Hybrid Metaheuristic and Machine Learning Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
- Mohamed S. Hashish & Hany M. Hasanien & Haoran Ji & Abdulaziz Alkuhayli & Mohammed Alharbi & Tlenshiyeva Akmaral & Rania A. Turky & Francisco Jurado & Ahmed O. Badr, 2023. "Monte Carlo Simulation and a Clustering Technique for Solving the Probabilistic Optimal Power Flow Problem for Hybrid Renewable Energy Systems," Sustainability, MDPI, vol. 15(1), pages 1-25, January.
- Mohammad Rayati & Pasquale De Falco & Daniela Proto & Mokhtar Bozorg & Mauro Carpita, 2021. "Generation Data of Synthetic High Frequency Solar Irradiance for Data-Driven Decision-Making in Electrical Distribution Grids," Energies, MDPI, vol. 14(16), pages 1-21, August.
- Xiaoyang Deng & Jinghan He & Pei Zhang, 2017. "A Novel Probabilistic Optimal Power Flow Method to Handle Large Fluctuations of Stochastic Variables," Energies, MDPI, vol. 10(10), pages 1-21, October.
- Esau Zulu & Ryoichi Hara & Hiroyuki Kita, 2023. "An Efficient Hybrid Particle Swarm and Gradient Descent Method for the Estimation of the Hosting Capacity of Photovoltaics by Distribution Networks," Energies, MDPI, vol. 16(13), pages 1-17, July.
- Ziwei Zhu & Shifan Lu & Sui Peng, 2018. "An Improved Stochastic Response Surface Method Based Probabilistic Load Flow for Studies on Correlated Wind Speeds in the AC/DC Grid," Energies, MDPI, vol. 11(12), pages 1-14, December.
- Ziqiang Zhou & Fei Tang & Dichen Liu & Chenxu Wang & Xin Gao, 2020. "Probabilistic Assessment of Distribution Network with High Penetration of Distributed Generators," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
- Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
- González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
- Stavros Lazarou & Vasiliki Vita & Lambros Ekonomou, 2018. "Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-17, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Prusty, B. Rajanarayan & Jena, Debashisha, 2018. "An over-limit risk assessment of PV integrated power system using probabilistic load flow based on multi-time instant uncertainty modeling," Renewable Energy, Elsevier, vol. 116(PA), pages 367-383.
- Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
- Shargh, S. & Khorshid ghazani, B. & Mohammadi-ivatloo, B. & Seyedi, H. & Abapour, M., 2016. "Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties," Renewable Energy, Elsevier, vol. 94(C), pages 10-21.
- Philippe Jehiel & Jakub Steiner, 2020.
"Selective Sampling with Information-Storage Constraints [On interim rationality, belief formation and learning in decision problems with bounded memory],"
The Economic Journal, Royal Economic Society, vol. 130(630), pages 1753-1781.
- Philippe Jehiel & Jakub Steiner, 2018. "Selective Sampling with Information-Storage Constraints," CERGE-EI Working Papers wp621, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Philippe Jehiel & Jakub Steiner, 2020. "Selective Sampling with Information-Storage Constraints," Post-Print halshs-03229986, HAL.
- Philippe Jehiel & Jakub Steiner, 2019. "Selective Sampling with Information-Storage Constraints," Working Papers halshs-02183450, HAL.
- Philippe Jehiel & Jakub Steiner, 2019. "Selective Sampling with Information-Storage Constraints," PSE Working Papers halshs-02183450, HAL.
- Philippe Jehiel & Jakub Steiner, 2020. "Selective Sampling with Information-Storage Constraints," PSE-Ecole d'économie de Paris (Postprint) halshs-03229986, HAL.
- Segantin, Stefano & Testoni, Raffaella & Zucchetti, Massimo, 2019. "The lifetime determination of ARC reactor as a load-following plant in the energy framework," Energy Policy, Elsevier, vol. 126(C), pages 66-75.
- Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
- Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
- N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
- González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
- Sandeep Juneja & Perwez Shahabuddin, 2001. "Fast Simulation of Markov Chains with Small Transition Probabilities," Management Science, INFORMS, vol. 47(4), pages 547-562, April.
- Kaynar, Bahar & Ridder, Ad, 2010. "The cross-entropy method with patching for rare-event simulation of large Markov chains," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1380-1397, December.
- Arjmand, Reza & Rahimiyan, Morteza, 2016. "Statistical analysis of a competitive day-ahead market coupled with correlated wind production and electric load," Applied Energy, Elsevier, vol. 161(C), pages 153-167.
- Tito Homem-de-Mello, 2007. "A Study on the Cross-Entropy Method for Rare-Event Probability Estimation," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 381-394, August.
- N-H Shih, 2005. "Estimating completion-time distribution in stochastic activity networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 744-749, June.
- Sansavini, G. & Piccinelli, R. & Golea, L.R. & Zio, E., 2014. "A stochastic framework for uncertainty analysis in electric power transmission systems with wind generation," Renewable Energy, Elsevier, vol. 64(C), pages 71-81.
- Barukčić, M. & Hederić, Ž. & Hadžiselimović, M. & Seme, S., 2018. "A simple stochastic method for modelling the uncertainty of photovoltaic power production based on measured data," Energy, Elsevier, vol. 165(PB), pages 246-256.
- Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2006. "Probability of loss of assured safety in temperature dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 91(3), pages 320-348.
- T. P. I. Ahamed & V. S. Borkar & S. Juneja, 2006. "Adaptive Importance Sampling Technique for Markov Chains Using Stochastic Approximation," Operations Research, INFORMS, vol. 54(3), pages 489-504, June.
- Basrak, Bojan & Conroy, Michael & Olvera-Cravioto, Mariana & Palmowski, Zbigniew, 2022. "Importance sampling for maxima on trees," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 139-179.
- Carpinelli, Guido & Caramia, Pierluigi & Varilone, Pietro, 2015. "Multi-linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems," Renewable Energy, Elsevier, vol. 76(C), pages 283-295.
More about this item
Keywords
Correlation; Gaussian mixture approximation; Photovoltaic generation; Probabilistic load flow; Probability density function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:69:y:2017:i:c:p:1286-1302. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.